ترغب بنشر مسار تعليمي؟ اضغط هنا

OxIOD: The Dataset for Deep Inertial Odometry

97   0   0.0 ( 0 )
 نشر من قبل Changhao Chen
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Advances in micro-electro-mechanical (MEMS) techniques enable inertial measurements units (IMUs) to be small, cheap, energy efficient, and widely used in smartphones, robots, and drones. Exploiting inertial data for accurate and reliable navigation and localization has attracted significant research and industrial interest, as IMU measurements are completely ego-centric and generally environment agnostic. Recent studies have shown that the notorious issue of drift can be significantly alleviated by using deep neural networks (DNNs), e.g. IONet. However, the lack of sufficient labelled data for training and testing various architectures limits the proliferation of adopting DNNs in IMU-based tasks. In this paper, we propose and release the Oxford Inertial Odometry Dataset (OxIOD), a first-of-its-kind data collection for inertial-odometry research, with all sequences having ground-truth labels. Our dataset contains 158 sequences totalling more than 42 km in total distance, much larger than previous inertial datasets. Another notable feature of this dataset lies in its diversity, which can reflect the complex motions of phone-based IMUs in various everyday usage. The measurements were collected with four different attachments (handheld, in the pocket, in the handbag and on the trolley), four motion modes (halting, walking slowly, walking normally, and running), five different users, four types of off-the-shelf consumer phones, and large-scale localization from office buildings. Deep inertial tracking experiments were conducted to show the effectiveness of our dataset in training deep neural network models and evaluate learning-based and model-based algorithms. The OxIOD Dataset is available at: http://deepio.cs.ox.ac.uk

قيم البحث

اقرأ أيضاً

Ego-motion estimation is a fundamental requirement for most mobile robotic applications. By sensor fusion, we can compensate the deficiencies of stand-alone sensors and provide more reliable estimations. We introduce a tightly coupled lidar-IMU fusio n method in this paper. By jointly minimizing the cost derived from lidar and IMU measurements, the lidar-IMU odometry (LIO) can perform well with acceptable drift after long-term experiment, even in challenging cases where the lidar measurements can be degraded. Besides, to obtain more reliable estimations of the lidar poses, a rotation-constrained refinement algorithm (LIO-mapping) is proposed to further align the lidar poses with the global map. The experiment results demonstrate that the proposed method can estimate the poses of the sensor pair at the IMU update rate with high precision, even under fast motion conditions or with insufficient features.
We present a multi-camera visual-inertial odometry system based on factor graph optimization which estimates motion by using all cameras simultaneously while retaining a fixed overall feature budget. We focus on motion tracking in challenging environ ments such as in narrow corridors and dark spaces with aggressive motions and abrupt lighting changes. These scenarios cause traditional monocular or stereo odometry to fail. While tracking motion across extra cameras should theoretically prevent failures, it causes additional complexity and computational burden. To overcome these challenges, we introduce two novel methods to improve multi-camera feature tracking. First, instead of tracking features separately in each camera, we track features continuously as they move from one camera to another. This increases accuracy and achieves a more compact factor graph representation. Second, we select a fixed budget of tracked features which are spread across the cameras to ensure that the limited computational budget is never exceeded. We have found that using a smaller set of informative features can maintain the same tracking accuracy while reducing back-end optimization time. Our proposed method was extensively tested using a hardware-synchronized device containing an IMU and four cameras (a front stereo pair and two lateral) in scenarios including an underground mine, large open spaces, and building interiors with narrow stairs and corridors. Compared to stereo-only state-of-the-art VIO methods, our approach reduces the drift rate (RPE) by up to 80% in translation and 39% in rotation.
We present an efficient multi-sensor odometry system for mobile platforms that jointly optimizes visual, lidar, and inertial information within a single integrated factor graph. This runs in real-time at full framerate using fixed lag smoothing. To p erform such tight integration, a new method to extract 3D line and planar primitives from lidar point clouds is presented. This approach overcomes the suboptimality of typical frame-to-frame tracking methods by treating the primitives as landmarks and tracking them over multiple scans. True integration of lidar features with standard visual features and IMU is made possible using a subtle passive synchronization of lidar and camera frames. The lightweight formulation of the 3D features allows for real-time execution on a single CPU. Our proposed system has been tested on a variety of platforms and scenarios, including underground exploration with a legged robot and outdoor scanning with a dynamically moving handheld device, for a total duration of 96 min and 2.4 km traveled distance. In these test sequences, using only one exteroceptive sensor leads to failure due to either underconstrained geometry (affecting lidar) or textureless areas caused by aggressive lighting changes (affecting vision). In these conditions, our factor graph naturally uses the best information available from each sensor modality without any hard switches.
We present VILENS (Visual Inertial Lidar Legged Navigation System), an odometry system for legged robots based on factor graphs. The key novelty is the tight fusion of four different sensor modalities to achieve reliable operation when the individual sensors would otherwise produce degenerate estimation. To minimize leg odometry drift, we extend the robots state with a linear velocity bias term which is estimated online. This bias is only observable because of the tight fusion of this preintegrated velocity factor with vision, lidar, and IMU factors. Extensive experimental validation on the ANYmal quadruped robots is presented, for a total duration of 2 h and 1.8 km traveled. The experiments involved dynamic locomotion over loose rocks, slopes, and mud; these included perceptual challenges, such as dark and dusty underground caverns or open, feature-deprived areas, as well as mobility challenges such as slipping and terrain deformation. We show an average improvement of 62% translational and 51% rotational errors compared to a state-of-the-art loosely coupled approach. To demonstrate its robustness, VILENS was also integrated with a perceptive controller and a local path planner.
Many smartphone applications use inertial measurement units (IMUs) to sense movement, but the use of these sensors for pedestrian localization can be challenging due to their noise characteristics. Recent data-driven inertial odometry approaches have demonstrated the increasing feasibility of inertial navigation. However, they still rely upon conventional smartphone orientation estimates that they assume to be accurate, while in fact these orientation estimates can be a significant source of error. To address the problem of inaccurate orientation estimates, we present a two-stage, data-driven pipeline using a commodity smartphone that first estimates device orientations and then estimates device position. The orientation module relies on a recurrent neural network and Extended Kalman Filter to obtain orientation estimates that are used to then rotate raw IMU measurements into the appropriate reference frame. The position module then passes those measurements through another recurrent network architecture to perform localization. Our proposed method outperforms state-of-the-art methods in both orientation and position error on a large dataset we constructed that contains 20 hours of pedestrian motion across 3 buildings and 15 subjects.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا