ﻻ يوجد ملخص باللغة العربية
The suppression of superconductivity in disordered systems is a fundamental problem of condensed matter physics. Here we investigate the superconducting niobium-titanium-nitride (Nb_{1-x}Ti_{x}N) thin films grown by atomic layer deposition (ALD) where disorder is controlled by the slight tuning of the ALD process parameters. We observe the smooth crossover from the disorder-driven superconductor-normal metal transition (often reffered to as fermionic mechanism) to the case where bosonic mechanism dominates and increasing disorder leads to formation of metal with Cooper pairing. We show that, in moderately disordered films, the transition to zero-resistance state occurs in a full agreement with the conventional theories of superconducting fluctuations and Berezinskii-Kosterlitz-Thouless transition. However, the critically disordered films violate this accord showing low-temperature features possibly indicating the Bose metal phase. We show that it is the interrelation between films sheet resistance in the maximum, R_{max}, of the resistive curve R(T) and R_q = h/4e^2 that distinguishes between these two behaviors. We reveal the characteristic features in magnetoresistance of the critically disordered films with R_{max} > R_q
We report on the study of phonon properties and electron-phonon coupling in thin NbTiN films, which are intensively exploited in superconducting devices. Studied NbTiN films with thicknesses less than 10~nm are disordered with respect to electron tra
We solve the Ginzburg-Landau equation (GLE) for the mesoscopic superconducting thin film of the square shape in the magnetic field for the wide range of the Ginzburg-Landau parameter $0.05<kappa_{eff}<infty $. We found that the phase with the antivor
This paper has been withdrawn by the author
We report on the inelastic-scattering rate of electrons on phonons and relaxation of electron energy studied by means of magnetoconductance, and photoresponse, respectively, in a series of strongly disordered superconducting NbN films. The studied fi
We study the two-dimensional superconductor-insulator transition (SIT) in thin films of tantalum nitride. At zero magnetic field, films can be disorder-tuned across the SIT by adjusting thickness and film stoichiometry; insulating films exhibit class