We solve the Ginzburg-Landau equation (GLE) for the mesoscopic superconducting thin film of the square shape in the magnetic field for the wide range of the Ginzburg-Landau parameter $0.05<kappa_{eff}<infty $. We found that the phase with the antivor
tex exists in the broad range of parameters. When the coherence length decreases the topological phase transition to the phase with the same total vorticity and a reduced symmetry takes place. The giant vortex with the vorticity $m=3$ is found to be unstable for any field, $xi /a$ and $kappa_{eff}ge 0.1$. Reduction of $ kappa _{eff}$ does not make the phase with antivortex more stable contrary to the case of the cylindric sample of the type I superconductor.
The suppression of superconductivity in disordered systems is a fundamental problem of condensed matter physics. Here we investigate the superconducting niobium-titanium-nitride (Nb_{1-x}Ti_{x}N) thin films grown by atomic layer deposition (ALD) wher
e disorder is controlled by the slight tuning of the ALD process parameters. We observe the smooth crossover from the disorder-driven superconductor-normal metal transition (often reffered to as fermionic mechanism) to the case where bosonic mechanism dominates and increasing disorder leads to formation of metal with Cooper pairing. We show that, in moderately disordered films, the transition to zero-resistance state occurs in a full agreement with the conventional theories of superconducting fluctuations and Berezinskii-Kosterlitz-Thouless transition. However, the critically disordered films violate this accord showing low-temperature features possibly indicating the Bose metal phase. We show that it is the interrelation between films sheet resistance in the maximum, R_{max}, of the resistive curve R(T) and R_q = h/4e^2 that distinguishes between these two behaviors. We reveal the characteristic features in magnetoresistance of the critically disordered films with R_{max} > R_q
Topological insulators (TIs) having intrinsic or proximity-coupled s-wave superconductivity host Majorana zero modes (MZMs) at the ends of vortex lines. The MZMs survive up to a critical doping of the TI at which there is a vortex phase transition th
at eliminates the MZMs. In this work, we show that the phenomenology in higher-order topological insulators (HOTIs) can be qualitatively distinct. In particular, we find two distinct features. (i) We find that vortices placed on the gapped (side) surfaces of the HOTI, exhibit a pair of phase transitions as a function of doping. The first transition is a surface phase transition after which MZMs appear. The second transition is the well-known vortex phase transition. We find that the surface transition appears because of the competition between the superconducting gap and the local $mathcal{T}$-breaking gap on the surface. (ii) We present numerical evidence that shows strong variation of the critical doping for the vortex phase transition as the center of the vortex is moved toward or away from the hinges of the sample. We believe our work provides new phenomenology that can help identify HOTIs, as well as illustrating a promising platform for the realization of MZMs.
We theoretically study bilayer superconducting topological insulator film, in which superconductivity exists for both top and bottom surface states. We show that an in-plane magnetic field can drive the system into Larkin-Ovchinnikov (LO) phase, wher
e electrons are paired with finite momenta. The LO phase is topologically non-trivial and characterized by a Z 2 topological invariant, leading to a Majorana zero mode chain along the edge perpendicular to in-plane magnetic fields.
We study the phase diagram of the extended Hubbard model on a two-dimensional square lattice, including on-site (U) and nearest-neighbor (V) interactions, at weak couplings. We show that the charge-density-wave phase that is known to occur at half-fi
lling when 4V > U gives way to a d_{xy} -wave superconducting instability away from half-filling, when the Fermi surface is not perfectly nested, and for sufficiently large repulsive and a range of on-site repulsive interaction. In addition, when nesting is further suppressed and in presence of a nearest-neighbor attraction, a triplet time-reversal breaking (p_x + ip_y)-wave pairing instability emerges, competing with the d_{x2+y2} pairing state that is known to dominate at fillings just slightly away from half. At even smaller fillings, where the Fermi surface no longer presents any nesting, the (p_x +ip_y)-wave superconducting phase dominates in the whole regime of on-site repulsions and nearest-neighbor attractions, while d_{xy}-pairing occurs in the presence of on-site attraction. Our results suggest that zero-energy Majorana fermions can be realized on a square lattice in the presence of a magnetic field. For a system of cold fermionic atoms on a two-dimensional square optical lattice, both an on-site repulsion and a nearest-neighbor attraction would be required, in addition to rotation of the system to create vortices. We discuss possible ways of experimentally engineering the required interaction terms in a cold atom system.