ﻻ يوجد ملخص باللغة العربية
Using Relativistic Quantum Geometry we study back-reaction effects of space-time inside the causal horizon of a static de Sitter metric, in order to make a quantum thermodynamical description of space-time. We found a finite number of discrete energy levels for a scalar field from a polynomial condition of the confluent hypergeometric functions expanded around $r=0$. As in the previous work, we obtain that the uncertainty principle is valid for each energy level on sub-horizon scales of space-time. We found that temperature and entropy are dependent on the number of sub-states on each energys level and the Bekenstein-Hawking temperature of each energy level is recovered when the number of sub-states of a given level tends to infinity. We propose that the primordial state of the universe could be described by a de Sitter metric with Planck energy $E_p=m_p,c^2$, and a B-H temperature: $T_{BH}=left(frac{hbar,c}{2pi,l_p,K_B}right)$.
We study the free massive scalar field in de Sitter spacetime with static charts. In particular, we find positive-frequency modes for the Bunch-Davies vacuum state natural to the static charts as superpositions of the well-known positive-frequency mo
We perform a minisuperspace analysis of an information-theoretic nonlinear Wheeler-deWitt (WDW) equation for de Sitter universes. The nonlinear WDW equation, which is in the form of a difference-differential equation, is transformed into a pure diffe
The method of adiabatic invariants for time dependent Hamiltonians is applied to a massive scalar field in a de Sitter space-time. The scalar field ground state, its Fock space and coherent states are constructed and related to the particle states. D
The stability of black holes and solitons in d-dimensional Anti-de Sitter space-time against scalar field condensation is discussed. The resulting solutions are hairy black holes and solitons, respectively. In particular, we will discuss static black
Different forms of the metric for the Kerr-NUT-(anti-)de Sitter space-time are being widely used in its extension to higher dimensions. The purpose of this note is to relate the parameters that are being used to the physical parameters (mass, rotatio