ترغب بنشر مسار تعليمي؟ اضغط هنا

The impact of AGN feedback on galaxy intrinsic alignments in the Horizon simulations

65   0   0.0 ( 0 )
 نشر من قبل Nora Elisa Chisari
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The intrinsic correlations of galaxy shapes and orientations across the large-scale structure of the Universe are a known contaminant to weak gravitational lensing. They are known to be dependent on galaxy properties, such as their mass and morphologies. The complex interplay between alignments and the physical processes that drive galaxy evolution remains vastly unexplored. We assess the sensitivity of intrinsic alignments (shapes and angular momenta) to Active Galactic Nuclei -AGN- feedback by comparing galaxy alignment in twin runs of the cosmological hydrodynamical Horizon simulation, which do and do not include AGN feedback respectively. We measure intrinsic alignments in three dimensions and in projection at z=0 and z=1. We find that the projected alignment signal of all galaxies with resolved shapes with respect to the density field in the simulation is robust to AGN feedback, thus giving similar predictions for contamination to weak lensing. The relative alignment of galaxy shapes around galaxy positions is however significantly impacted, especially when considering high-mass ellipsoids. Using a sample of galaxy twins across simulations, we determine that AGN changes both the galaxy selection and their actual alignments. Finally, we measure the alignments of angular momenta of galaxies with their nearest filament. Overall, these are more significant in the presence of AGN as a result of the higher abundance of massive pressure-supported galaxies.

قيم البحث

اقرأ أيضاً

Elliptical galaxies today appear aligned with the large-scale structure of the Universe, but it is still an open question when they acquire this alignment. Observational data is currently insufficient to provide constraints on the time evolution of i ntrinsic alignments, and hence existing models range from assuming that galaxies gain some primordial alignment at formation, to suggesting that they react instantaneously to tidal interactions with the large-scale structure. Using the cosmological hydrodynamical simulation Horizon-AGN, we measure the relative alignments between the major axes of galaxies and eigenvectors of the tidal field as a function of redshift. We focus on constraining the time evolution of the alignment of the main progenitors of massive $z=0$ elliptical galaxies, the main weak lensing contaminant at low redshift. We show that this population, which at $z=0$ has a stellar mass above $10^{10.4}$ M$_odot$, transitions from having no alignment with the tidal field at $z=3$, to a significant alignment by $z=1$. From $z=0.5$ they preserve their alignment at an approximately constant level until $z=0$. We find a mass-dependence of the alignment signal of elliptical progenitors, whereby ellipticals that are less massive today ($10^{10.4}<M/{rm M}_odot<10^{10.7}$) do not become aligned till later redshifts ($z<2$), compared to more massive counterparts. We also present an extended study of progenitor alignments in the parameter space of stellar mass and galaxy dynamics, the impact of shape definition and tidal field smoothing.
We study the alignments of satellite galaxies, and their anisotropic distribution, with respect to location and orientation of their host central galaxy in MassiveBlack-II and IllustrisTNG simulations. We find that: the shape of the satellite system in halos of mass ($> 10^{13}h^{-1}M_{odot}$) is well aligned with the shape of the central galaxy at $z=0.06$ with the mean alignment between the major axes being $sim Delta theta = 12^{circ}$ when compared to a uniform random distribution; that satellite galaxies tend to be anisotropically distributed along the major axis of the central galaxy with a stronger alignment in halos of higher mass or luminosity; and that the satellite distribution is more anisotropic for central galaxies with lower star formation rate, which are spheroidal, and for red central galaxies.Radially we find that satellites tend to be distributed along the major axis of the shape of the stellar component of central galaxies at smaller scales and the dark matter component on larger scales. We find that the dependence of satellite anisotropy on central galaxy properties and the radial distance is similar in both the simulations with a larger amplitude in MassiveBlack-II. The orientation of satellite galaxies tends to point toward the location of the central galaxy at small scales and this correlation decreases with increasing distance, and the amplitude of satellite alignment is higher in high mass halos. However, the projected ellipticities do not exhibit a scale-dependent radial alignment, as has been seen in some observational measurements.
We report results for the alignments of galaxies in the EAGLE and cosmo-OWLS simulations as a function of galaxy separation and halo mass. The combination of these hydro-cosmological simulations enables us to span four orders of magnitude in halo mas s ($10.7<log_{10}(M_{200}/[h^{-1}M_odot])<15$) and a large range of separations ($-1<log_{10}(r/[h^{-1}Mpc])< 2$). We focus on two classes of alignments: the orientations of galaxies with respect to either the directions to, or the orientations of, surrounding galaxies. We find that the strength of the alignment is a strongly decreasing function of the distance between galaxies. The orientation-direction alignment can remain significant up to ~100 Mpc, for galaxies hosted by the most massive haloes in our simulations. Galaxies hosted by more massive subhaloes show stronger alignment. At a fixed halo mass, more aspherical or prolate galaxies exhibit stronger alignments. The spatial distribution of satellites is anisotropic and significantly aligned with the major axis of the main host halo. The major axis of satellite galaxies, when all stars are considered, are preferentially aligned towards the centre of the main host halo. The predicted projected direction-orientation alignment, $epsilon_{g+}(r_{p})$, is in broad agreement with recent observations when only stars within the typical observable extent of a galaxy are used to define galaxy orientations. We find that the orientation-orientation alignment is weaker than the orientation-direction alignment on all scales. Overall, the strength of galaxy alignments depends strongly on the subset of stars that are used to measure the orientations of galaxies and it is always weaker than the alignment of the dark matter haloes. Thus, alignment models that use halo orientation as a direct proxy for galaxy orientation will overestimate the impact of intrinsic alignments on weak lensing analyses.
The Lyman-$alpha$ forest is a powerful probe for cosmology, but it is also strongly impacted by galaxy evolution and baryonic processes such as Active Galactic Nuclei (AGN) feedback, which can redistribute mass and energy on large scales. We constrai n the signatures of AGN feedback on the 1D power spectrum of the Lyman-$alpha$ forest using a series of eight hydro-cosmological simulations performed with the Adaptative Mesh Refinement code RAMSES. This series starts from the Horizon-AGN simulation and varies the sub-grid parameters for AGN feeding, feedback and stochasticity. These simulations cover the whole plausible range of feedback and feeding parameters according to the resulting galaxy properties. AGNs globally suppress the Lyman-$alpha$ power at all scales. On large scales, the energy injection and ionization dominate over the supply of gas mass from AGN-driven galactic winds, thus suppressing power. On small scales, faster cooling of denser gas mitigates the suppression. This effect increases with decreasing redshift. We provide lower and upper limits of this signature at nine redshifts between $z=4.25$ and $z=2.0$, making it possible to account for it at post-processing stage in future work given that running simulations without AGN feedback can save considerable amounts of computing resources. Ignoring AGN feedback in cosmological inference analyses leads to strong biases with 2% shift on $sigma_8$ and 1% shift on $n_s$, which represents twice the standards deviation of the current constraints on $n_s$.
By means of zoom-in hydrodynamic simulations we quantify the amount of neutral hydrogen (HI) hosted by groups and clusters of galaxies. Our simulations, which are based on an improved formulation of smoothed particle hydrodynamics (SPH), include radi ative cooling, star formation, metal enrichment and supernova feedback, and can be split in two different groups, depending on whether feedback from active galactic nuclei (AGN) is turned on or off. Simulations are analyzed to account for HI self-shielding and the presence of molecular hydrogen. We find that the mass in neutral hydrogen of dark matter halos monotonically increases with the halo mass and can be well described by a power-law of the form $M_{rm HI}(M,z)propto M^{3/4}$. Our results point out that AGN feedback reduces both the total halo mass and its HI mass, although it is more efficient in removing HI. We conclude that AGN feedback reduces the neutral hydrogen mass of a given halo by $sim50%$, with a weak dependence on halo mass and redshift. The spatial distribution of neutral hydrogen within halos is also affected by AGN feedback, whose effect is to decrease the fraction of HI that resides in the halo inner regions. By extrapolating our results to halos not resolved in our simulations we derive astrophysical implications from the measurements of $Omega_{rm HI}(z)$: halos with circular velocities larger than $sim25~{rm km/s}$ are needed to host HI in order to reproduce observations. We find that only the model with AGN feedback is capable of reproducing the value of $Omega_{rm HI}b_{rm HI}$ derived from available 21cm intensity mapping observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا