ﻻ يوجد ملخص باللغة العربية
We report results for the alignments of galaxies in the EAGLE and cosmo-OWLS simulations as a function of galaxy separation and halo mass. The combination of these hydro-cosmological simulations enables us to span four orders of magnitude in halo mass ($10.7<log_{10}(M_{200}/[h^{-1}M_odot])<15$) and a large range of separations ($-1<log_{10}(r/[h^{-1}Mpc])< 2$). We focus on two classes of alignments: the orientations of galaxies with respect to either the directions to, or the orientations of, surrounding galaxies. We find that the strength of the alignment is a strongly decreasing function of the distance between galaxies. The orientation-direction alignment can remain significant up to ~100 Mpc, for galaxies hosted by the most massive haloes in our simulations. Galaxies hosted by more massive subhaloes show stronger alignment. At a fixed halo mass, more aspherical or prolate galaxies exhibit stronger alignments. The spatial distribution of satellites is anisotropic and significantly aligned with the major axis of the main host halo. The major axis of satellite galaxies, when all stars are considered, are preferentially aligned towards the centre of the main host halo. The predicted projected direction-orientation alignment, $epsilon_{g+}(r_{p})$, is in broad agreement with recent observations when only stars within the typical observable extent of a galaxy are used to define galaxy orientations. We find that the orientation-orientation alignment is weaker than the orientation-direction alignment on all scales. Overall, the strength of galaxy alignments depends strongly on the subset of stars that are used to measure the orientations of galaxies and it is always weaker than the alignment of the dark matter haloes. Thus, alignment models that use halo orientation as a direct proxy for galaxy orientation will overestimate the impact of intrinsic alignments on weak lensing analyses.
We report the alignment and shape of dark matter, stellar, and hot gas distributions in the EAGLE and cosmo-OWLS simulations. The combination of these state-of-the-art hydro-cosmological simulations enables us to span four orders of magnitude in halo
Intrinsic alignments (IA), correlations between the intrinsic shapes and orientations of galaxies on the sky, are both a significant systematic in weak lensing and a probe of the effect of large-scale structure on galactic structure and angular momen
We study the alignments of satellite galaxies, and their anisotropic distribution, with respect to location and orientation of their host central galaxy in MassiveBlack-II and IllustrisTNG simulations. We find that: the shape of the satellite system
The intrinsic correlations of galaxy shapes and orientations across the large-scale structure of the Universe are a known contaminant to weak gravitational lensing. They are known to be dependent on galaxy properties, such as their mass and morpholog
Elliptical galaxies today appear aligned with the large-scale structure of the Universe, but it is still an open question when they acquire this alignment. Observational data is currently insufficient to provide constraints on the time evolution of i