ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Field Quantum Disordered State in $alpha$-RuCl3: Spin Flips, Bound States, and a Multi-Particle Continuum

66   0   0.0 ( 0 )
 نشر من قبل Anuja Sahasrabudhe
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Layered $alpha$-RuCl3 has been discussed as a proximate Kitaev spin liquid compound. Raman and THz spectroscopy of magnetic excitations confirm that the low-temperature antiferromagnetic ordered phase features a broad Raman continuum, together with two magnon-like excitations at 2.7 and 3.6 meV, respectively. The continuum strength is maximized as long-range order is suppressed by an external magnetic field. The state above the field-induced quantum phase transition around 7.5 T is characterized by a gapped multi-particle continuum out of which a two-particle bound state emerges, together with a well-defined single-particle excitation at lower energy. Exact diagonalization calculations demonstrate that Kitaev and off-diagonal exchange terms in the Fleury-Loudon operator are crucial for the occurrence of these features in the Raman spectra. Our study firmly establishes the partially-polarized quantum disordered character of the high-field phase.



قيم البحث

اقرأ أيضاً

The Kitaev model on a honeycomb lattice predicts a paradigmatic quantum spin liquid (QSL) exhibiting Majorana Fermion excitations. The insight that Kitaev physics might be realized in practice has stimulated investigations of candidate materials, rec ently including alpha-RuCl3. In all the systems studied to date, non-Kitaev interactions induce magnetic order at low temperature. However, in-plane magnetic fields of roughly 8 Tesla suppress the long-range magnetic order in alpha-RuCl3 raising the intriguing possibility of a field-induced QSL exhibiting non-Abelian quasiparticle excitations. Here we present inelastic neutron scattering in alpha-RuCl3 in an applied magnetic field. At a field of 8 Tesla, the spin waves characteristic of the ordered state vanish throughout the Brillouin zone. The remaining single dominant feature of the response is a broad continuum centered at the Gamma point, previously identified as a signature of fractionalized excitations. This provides compelling evidence that a field-induced QSL state has been achieved.
145 - S. Ward , P. Bouillot , C. Kollath 2016
The challenge of one-dimensional systems is to understand their physics beyond the level of known elementary excitations. By high-resolution neutron spectroscopy in a quantum spin ladder material, we probe the leading multiparticle excitation by char acterizing the two-magnon bound state at zero field. By applying high magnetic fields, we create and select the singlet (longitudinal) and triplet (transverse) excitations of the fully spin-polarized ladder, which have not been observed previously and are close analogs of the modes anticipated in a polarized Haldane chain. Theoretical modelling of the dynamical response demonstrates our complete quantitative understanding of these states.
Spin-orbit coupled honeycomb magnets with the Kitaev interaction have received a lot of attention due to their potential of hosting exotic quantum states including quantum spin liquids. Thus far, the most studied Kitaev systems are 4d/5d-based honeyc omb magnets. Recent theoretical studies predicted that 3d-based honeycomb magnets, including Na2Co2TeO6 (NCTO), could also be a potential Kitaev system. Here, we have used a combination of heat capacity, magnetization, electron spin resonance measurements alongside inelastic neutron scattering (INS) to study NCTOs quantum magnetism, and we have found a field-induced spin disordered state in an applied magnetic field range of 7.5 T < B (vertical to b-axis) < 10.5 T. The INS spectra were also simulated to tentatively extract the exchange interactions. As a 3d-magnet with a field-induced disordered state on an effective spin-1/2 honeycomb lattice, NCTO expands the Kitaev model to 3d compounds, promoting further interests on the spin-orbital effect in quantum magnets.
Revealing the spin excitations of complex quantum magnets is key to developing a minimal model that explains the underlying magnetic correlations in the ground state. We investigate the low-energy magnons in $alpha$-RuCl$_3$ by combining time-domain terahertz spectroscopy under an external magnetic field and model Hamiltonian calculations. We observe two absorption peaks around 2.0 and 2.4 meV, which we attribute to zone-center spin waves. Using linear spin-wave theory with only nearest-neighbor terms of the exchange couplings, we calculate the antiferromagnetic resonance frequencies and reveal their dependence on an external field applied parallel to the nearest-neighbor Ru-Ru bonds. We find that the magnon behavior in an applied magnetic field can be understood only by including an off-diagonal $Gamma$ exchange term to the minimal Heisenberg-Kitaev model. Such an anisotropic exchange interaction that manifests itself as a result of strong spin-orbit coupling can naturally account for the observed mixing of the modes at higher fields strengths.
We investigate the phononic in-plane longitudinal low-temperature thermal conductivity kappa_ab of the Kitaev quantum magnet alpha-RuCl3 for large in-plane magnetic fields up to 33 T. Our data reveal for fields larger than the critical field Bc ~ 8 T , at which the magnetic order is suppressed, a dramatic increase of kappa_ab at all temperatures investigated. The analysis of our data shows that the phonons are not only strongly scattered by a magnetic mode at relatively large energy which scales roughly linearly with the magnetic field, but also by a small-energy mode which emerges near Bc with a square-root-like field dependence. While the former is in striking agreement with recent spin wave theory (SWT) results of the magnetic excitation spectrum at the Gamma point, the energy of the latter is too small to be compatible with the SWT-expected magnon gap at the M point, despite the matching field dependence. Therefore, an alternative scenario based on phonon scattering off the thermal excitation of random-singlet states is proposed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا