ﻻ يوجد ملخص باللغة العربية
Layered $alpha$-RuCl3 has been discussed as a proximate Kitaev spin liquid compound. Raman and THz spectroscopy of magnetic excitations confirm that the low-temperature antiferromagnetic ordered phase features a broad Raman continuum, together with two magnon-like excitations at 2.7 and 3.6 meV, respectively. The continuum strength is maximized as long-range order is suppressed by an external magnetic field. The state above the field-induced quantum phase transition around 7.5 T is characterized by a gapped multi-particle continuum out of which a two-particle bound state emerges, together with a well-defined single-particle excitation at lower energy. Exact diagonalization calculations demonstrate that Kitaev and off-diagonal exchange terms in the Fleury-Loudon operator are crucial for the occurrence of these features in the Raman spectra. Our study firmly establishes the partially-polarized quantum disordered character of the high-field phase.
The Kitaev model on a honeycomb lattice predicts a paradigmatic quantum spin liquid (QSL) exhibiting Majorana Fermion excitations. The insight that Kitaev physics might be realized in practice has stimulated investigations of candidate materials, rec
The challenge of one-dimensional systems is to understand their physics beyond the level of known elementary excitations. By high-resolution neutron spectroscopy in a quantum spin ladder material, we probe the leading multiparticle excitation by char
Spin-orbit coupled honeycomb magnets with the Kitaev interaction have received a lot of attention due to their potential of hosting exotic quantum states including quantum spin liquids. Thus far, the most studied Kitaev systems are 4d/5d-based honeyc
Revealing the spin excitations of complex quantum magnets is key to developing a minimal model that explains the underlying magnetic correlations in the ground state. We investigate the low-energy magnons in $alpha$-RuCl$_3$ by combining time-domain
We investigate the phononic in-plane longitudinal low-temperature thermal conductivity kappa_ab of the Kitaev quantum magnet alpha-RuCl3 for large in-plane magnetic fields up to 33 T. Our data reveal for fields larger than the critical field Bc ~ 8 T