ﻻ يوجد ملخص باللغة العربية
Secret sharing is the art of securely sharing information between more than two people in such a way that its reconstruction requires the collaboration of a certain number of parties. Entanglement-based secret sharing schemes which utilise multi-particle entanglement are limited by their scalability. Recently, a high-dimensional single photon secret sharing protocol was proposed which has impressive advantages in scalability. However, the experimental realisation of this protocol remains elusive. Here, by taking advantage of the high-dimensional Hilbert space for orbital angular momentum and using Perfect Vortex beams as their carriers, we present a proof-of-principle implementation of a high-dimensional single photon quantum secret sharing scheme. We experimentally implemented this scheme for 10 participants in $d=11$ dimensions and show how it can be easily scaled to higher dimensions and any number of participants.
We report the experimental demonstration of the induced polarization-dependent optical vortex beams. We use the Talbot configuration as a method to probe this effect. In particular, our simple experiment shows the direct measurement of this observati
Secret sharing allows three or more parties to share secret information which can only be decrypted through collaboration. It complements quantum key distribution as a valuable resource for securely distributing information. Here we take advantage of
Secret sharing is a multiparty cryptographic task in which some secret information is splitted into several pieces which are distributed among the participants such that only an authorized set of participants can reconstruct the original secret. Simi
Perfect vortex beams are the orbital angular momentum (OAM)-carrying beams with fixed annular intensities, which provide a better source of OAM than traditional Laguerre- Gaussian beams. However, ordinary schemes to obtain the perfect vortex beams ar
We consider the task of sharing a secret quantum state in a quantum network in a verifiable way. We propose a protocol that achieves this task, while reducing the number of required qubits, as compared to the existing protocols. To achieve this, we c