ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental observation of polarization-dependent optical vortex beams

56   0   0.0 ( 0 )
 نشر من قبل Sarayut Deachapunya
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the experimental demonstration of the induced polarization-dependent optical vortex beams. We use the Talbot configuration as a method to probe this effect. In particular, our simple experiment shows the direct measurement of this observation. Our experiment can exhibit clearly the combination between the polarization and orbital angular momentum (OAM) states of light. This implementation might be useful for further studies in the quantum system or quantum information.

قيم البحث

اقرأ أيضاً

We predict and experimentally observe three-dimensional microscale nonparaxial optical bottle beams based on the generation of a caustic surface under revolution. Such bottle beams exhibit high contrast between the surrounding surface and the effecti vely void interior. Via caustic engineering we can precisely control the functional form of the high intensity surface to achieve microscale bottle beams with longitudinal and transverse dimensions of the same order of magnitude. Although, in general, the phase profile at the input plane can be computed numerically, we find closed form expressions for bottle beams with various type of surfaces both in real and in the Fourier space.
Secret sharing is the art of securely sharing information between more than two people in such a way that its reconstruction requires the collaboration of a certain number of parties. Entanglement-based secret sharing schemes which utilise multi-part icle entanglement are limited by their scalability. Recently, a high-dimensional single photon secret sharing protocol was proposed which has impressive advantages in scalability. However, the experimental realisation of this protocol remains elusive. Here, by taking advantage of the high-dimensional Hilbert space for orbital angular momentum and using Perfect Vortex beams as their carriers, we present a proof-of-principle implementation of a high-dimensional single photon quantum secret sharing scheme. We experimentally implemented this scheme for 10 participants in $d=11$ dimensions and show how it can be easily scaled to higher dimensions and any number of participants.
Analytical forms of the optical helicity and optical chirality of monochromatic Laguerre-Gaussian optical vortex beams are derived up to second order in the paraxial parameter $kw_0$. We show that input linearly polarised optical vortices which posse ss no optical chirality, helicity or spin densities can acquire them at the focal plane for values of a beam waist $w_0 approx lambda$ via an OAM-SAM conversion which is manifest through longitudinal (with respect to the direction of propagation) fields. We place the results into context with respect to the intrinsic and extrinsic nature of SAM and OAM, respectively; the continuity equation which relates the densities of helicity and spin; and the newly coined term Kelvins chirality which describes the extrinsic, geometrical chirality of structured laser beams. Finally we compare our work (which agrees with previous studies) to the recent article Koksal, et al. Optics Communications 490, 126907 (2021) which shows conflicting results, highlighting the importance of including all relevant terms to a given order in the paraxial parameter.
Weyl fermions are hypothetical two-component massless relativistic particles in three-dimensional (3D) space, proposed by Hermann Weyl in 1929. Their band-crossing points, called Weyl points, carry a topological charge and are therefore highly robust . There has been much excitement over recent observations of Weyl points in microwave photonic crystals and the semimetal TaAs. Here, we report on the first experimental observation of Weyl points of light at optical frequencies. These are also the first observations of type-II Weyl points for photons, which have strictly positive group velocity along one spatial direction. We use a 3D structure consisting of laser-written waveguides, and show the presence of type-II Weyl points by (1) observing conical diffraction along one axis when the frequency is tuned to the Weyl point; and (2) observing the associated Fermi arc surface states. The realization of Weyl points at optical frequencies allow these novel electromagnetic modes to be further explored in the context of linear, nonlinear, and quantum optics.
421 - Qun Hao , Wenli Wang , Yao Hu 2021
Vortex beams with orbital angular momentum has been attracting tremendous attention due to their considerable applications ranging from optical tweezers to quantum information processing. Metalens, an ultra-compact and multifunctional device, provide a desired platform for designing vortex beams. A spin-dependent metalens can boost the freedom to further satisfy practical applications. By combining geometric phase and propagation phase, we propose and demonstrate an approach to design a spin-dependent metalens generating dual-focused vortex beams along longitudinal or transverse direction, i.e., metalenses with predesigned spin-dependent phase profiles. Under the illumination of an elliptical polarization incident beam, two spin-dependent focused vortex beams can be observed, and the relative focal intensity of them can be easily adjusted by modulating the ellipticity of the incident beam. Moreover, we also demonstrated that the separate distance between these dual-focused beams and their topological charges could be simultaneously tailored at will, which may have a profound impact on optical trapping and manipulation in photonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا