ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Channel Deep Networks for Block-Based Image Compressive Sensing

86   0   0.0 ( 0 )
 نشر من قبل Chengqing Li
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Incorporating deep neural networks in image compressive sensing (CS) receives intensive attentions recently. As deep network approaches learn the inverse mapping directly from the CS measurements, a number of models have to be trained, each of which corresponds to a sampling rate. This may potentially degrade the performance of image CS, especially when multiple sampling rates are assigned to different blocks within an image. In this paper, we develop a multi-channel deep network for block-based image CS with performance significantly exceeding the current state-of-the-art methods. The significant performance improvement of the model is attributed to block-based sampling rates allocation and model-level removal of blocking artifacts. Specifically, the image blocks with a variety of sampling rates can be reconstructed in a single model by exploiting inter-block correlation. At the same time, the initially reconstructed blocks are reassembled into a full image to remove blocking artifacts within the network by unrolling a hand-designed block-based CS algorithm. Experimental results demonstrate that the proposed method outperforms the state-of-the-art CS methods by a large margin in terms of objective metrics, PSNR, SSIM, and subjective visual quality.

قيم البحث

اقرأ أيضاً

Most compressive sensing (CS) reconstruction methods can be divided into two categories, i.e. model-based methods and classical deep network methods. By unfolding the iterative optimization algorithm for model-based methods onto networks, deep unfold ing methods have the good interpretation of model-based methods and the high speed of classical deep network methods. In this paper, to solve the visual image CS problem, we propose a deep unfolding model dubbed AMP-Net. Rather than learning regularization terms, it is established by unfolding the iterative denoising process of the well-known approximate message passing algorithm. Furthermore, AMP-Net integrates deblocking modules in order to eliminate the blocking artifacts that usually appear in CS of visual images. In addition, the sampling matrix is jointly trained with other network parameters to enhance the reconstruction performance. Experimental results show that the proposed AMP-Net has better reconstruction accuracy than other state-of-the-art methods with high reconstruction speed and a small number of network parameters.
Deep neural networks give state-of-the-art accuracy for reconstructing images from few and noisy measurements, a problem arising for example in accelerated magnetic resonance imaging (MRI). However, recent works have raised concerns that deep-learnin g-based image reconstruction methods are sensitive to perturbations and are less robust than traditional methods: Neural networks (i) may be sensitive to small, yet adversarially-selected perturbations, (ii) may perform poorly under distribution shifts, and (iii) may fail to recover small but important features in an image. In order to understand the sensitivity to such perturbations, in this work, we measure the robustness of different approaches for image reconstruction including trained and un-trained neural networks as well as traditional sparsity-based methods. We find, contrary to prior works, that both trained and un-trained methods are vulnerable to adversarial perturbations. Moreover, both trained and un-trained methods tuned for a particular dataset suffer very similarly from distribution shifts. Finally, we demonstrate that an image reconstruction method that achieves higher reconstruction quality, also performs better in terms of accurately recovering fine details. Our results indicate that the state-of-the-art deep-learning-based image reconstruction methods provide improved performance than traditional methods without compromising robustness.
Compressive sensing (CS) is widely used to reduce the acquisition time of magnetic resonance imaging (MRI). Although state-of-the-art deep learning based methods have been able to obtain fast, high-quality reconstruction of CS-MR images, their main d rawback is that they treat complex-valued MRI data as real-valued entities. Most methods either extract the magnitude from the complex-valued entities or concatenate them as two real-valued channels. In both the cases, the phase content, which links the real and imaginary parts of the complex-valued entities, is discarded. In order to address the fundamental problem of real-valued deep networks, i.e. their inability to process complex-valued data, we propose a novel framework based on a complex-valued generative adversarial network (Co-VeGAN). Our model can process complex-valued input, which enables it to perform high-quality reconstruction of the CS-MR images. Further, considering that phase is a crucial component of complex-valued entities, we propose a novel complex-valued activation function, which is sensitive to the phase of the input. Extensive evaluation of the proposed approach on different datasets using various sampling masks demonstrates that the proposed model significantly outperforms the existing CS-MRI reconstruction techniques in terms of peak signal-to-noise ratio as well as structural similarity index. Further, it uses significantly fewer trainable parameters to do so, as compared to the real-valued deep learning based methods.
Compressed sensing (CS) is an efficient method to reconstruct MR image from small sampled data in $k$-space and accelerate the acquisition of MRI. In this work, we propose a novel deep geometric distillation network which combines the merits of model -based and deep learning-based CS-MRI methods, it can be theoretically guaranteed to improve geometric texture details of a linear reconstruction. Firstly, we unfold the model-based CS-MRI optimization problem into two sub-problems that consist of image linear approximation and image geometric compensation. Secondly, geometric compensation sub-problem for distilling lost texture details in approximation stage can be expanded by Taylor expansion to design a geometric distillation module fusing features of different geometric characteristic domains. Additionally, we use a learnable version with adaptive initialization of the step-length parameter, which allows model more flexibility that can lead to convergent smoothly. Numerical experiments verify its superiority over other state-of-the-art CS-MRI reconstruction approaches. The source code will be available at url{https://github.com/fanxiaohong/Deep-Geometric-Distillation-Network-for-CS-MRI}
Compressive sensing magnetic resonance imaging (CS-MRI) accelerates the acquisition of MR images by breaking the Nyquist sampling limit. In this work, a novel generative adversarial network (GAN) based framework for CS-MRI reconstruction is proposed. Leveraging a combination of patch-based discriminator and structural similarity index based loss, our model focuses on preserving high frequency content as well as fine textural details in the reconstructed image. Dense and residual connections have been incorporated in a U-net based generator architecture to allow easier transfer of information as well as variable network length. We show that our algorithm outperforms state-of-the-art methods in terms of quality of reconstruction and robustness to noise. Also, the reconstruction time, which is of the order of milliseconds, makes it highly suitable for real-time clinical use.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا