ترغب بنشر مسار تعليمي؟ اضغط هنا

Ellipsis Resolution as Question Answering: An Evaluation

64   0   0.0 ( 0 )
 نشر من قبل Rahul Aralikatte
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most, if not all forms of ellipsis (e.g., so does Mary) are similar to reading comprehension questions (what does Mary do), in that in order to resolve them, we need to identify an appropriate text span in the preceding discourse. Following this observation, we present an alternative approach for English ellipsis resolution relying on architectures developed for question answering (QA). We present both single-task models, and joint models trained on auxiliary QA and coreference resolution datasets, clearly outperforming the current state of the art for Sluice Ellipsis (from 70.00 to 86.01 F1) and Verb Phrase Ellipsis (from 72.89 to 78.66 F1).



قيم البحث

اقرأ أيضاً

Retrieval question answering (ReQA) is the task of retrieving a sentence-level answer to a question from an open corpus (Ahmad et al.,2019).This paper presents MultiReQA, anew multi-domain ReQA evaluation suite com-posed of eight retrieval QA tasks d rawn from publicly available QA datasets. We provide the first systematic retrieval based evaluation over these datasets using two supervised neural models, based on fine-tuning BERT andUSE-QA models respectively, as well as a surprisingly strong information retrieval baseline,BM25. Five of these tasks contain both train-ing and test data, while three contain test data only. Performance on the five tasks with train-ing data shows that while a general model covering all domains is achievable, the best performance is often obtained by training exclusively on in-domain data.
We propose a novel method for exploiting the semantic structure of text to answer multiple-choice questions. The approach is especially suitable for domains that require reasoning over a diverse set of linguistic constructs but have limited training data. To address these challenges, we present the first system, to the best of our knowledge, that reasons over a wide range of semantic abstractions of the text, which are derived using off-the-shelf, general-purpose, pre-trained natural language modules such as semantic role labelers, coreference resolvers, and dependency parsers. Representing multiple abstractions as a family of graphs, we translate question answering (QA) into a search for an optimal subgraph that satisfies certain global and local properties. This formulation generalizes several prior structured QA systems. Our system, SEMANTICILP, demonstrates strong performance on two domains simultaneously. In particular, on a collection of challenging science QA datasets, it outperforms various state-of-the-art approaches, including neural models, broad coverage information retrieval, and specialized techniques using structured knowledge bases, by 2%-6%.
In this paper, we propose a recent and under-researched paradigm for the task of event detection (ED) by casting it as a question-answering (QA) problem with the possibility of multiple answers and the support of entities. The extraction of event tri ggers is, thus, transformed into the task of identifying answer spans from a context, while also focusing on the surrounding entities. The architecture is based on a pre-trained and fine-tuned language model, where the input context is augmented with entities marked at different levels, their positions, their types, and, finally, the argument roles. Experiments on the ACE~2005 corpus demonstrate that the proposed paradigm is a viable solution for the ED task and it significantly outperforms the state-of-the-art models. Moreover, we prove that our methods are also able to extract unseen event types.
Distributional compositional (DisCo) models are functors that compute the meaning of a sentence from the meaning of its words. We show that DisCo models in the category of sets and relations correspond precisely to relational databases. As a conseque nce, we get complexity-theoretic reductions from semantics and entailment of a fragment of natural language to evaluation and containment of conjunctive queries, respectively. Finally, we define question answering as an NP-complete problem.
Deep learning has improved performance on many natural language processing (NLP) tasks individually. However, general NLP models cannot emerge within a paradigm that focuses on the particularities of a single metric, dataset, and task. We introduce t he Natural Language Decathlon (decaNLP), a challenge that spans ten tasks: question answering, machine translation, summarization, natural language inference, sentiment analysis, semantic role labeling, zero-shot relation extraction, goal-oriented dialogue, semantic parsing, and commonsense pronoun resolution. We cast all tasks as question answering over a context. Furthermore, we present a new Multitask Question Answering Network (MQAN) jointly learns all tasks in decaNLP without any task-specific modules or parameters in the multitask setting. MQAN shows improvements in transfer learning for machine translation and named entity recognition, domain adaptation for sentiment analysis and natural language inference, and zero-shot capabilities for text classification. We demonstrate that the MQANs multi-pointer-generator decoder is key to this success and performance further improves with an anti-curriculum training strategy. Though designed for decaNLP, MQAN also achieves state of the art results on the WikiSQL semantic parsing task in the single-task setting. We also release code for procuring and processing data, training and evaluating models, and reproducing all experiments for decaNLP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا