ﻻ يوجد ملخص باللغة العربية
Deep learning systems have been successfully applied to Euclidean data such as images, video, and audio. In many applications, however, information and their relationships are better expressed with graphs. Graph Convolutional Networks (GCNs) appear to be a promising approach to efficiently learn from graph data structures, having shown advantages in many critical applications. As with other deep learning modalities, hardware acceleration is critical. The challenge is that real-world graphs are often extremely large and unbalanced; this poses significant performance demands and design challenges. In this paper, we propose Autotuning-Workload-Balancing GCN (AWB-GCN) to accelerate GCN inference. To address the issue of workload imbalance in processing real-world graphs, three hardware-based autotuning techniques are proposed: dynamic distribution smoothing, remote switching, and row remapping. In particular, AWB-GCN continuously monitors the sparse graph pattern, dynamically adjusts the workload distribution among a large number of processing elements (up to 4K PEs), and, after converging, reuses the ideal configuration. Evaluation is performed using an Intel D5005 FPGA with five commonly-used datasets. Results show that 4K-PE AWB-GCN can significantly elevate PE utilization by 7.7x on average and demonstrate considerable performance speedups over CPUs (3255x), GPUs (80.3x), and a prior GCN accelerator (5.1x).
The freedom of fast iterations of distributed deep learning tasks is crucial for smaller companies to gain competitive advantages and market shares from big tech giants. HorovodRunner brings this process to relatively accessible spark clusters. There
RGB-D based 6D pose estimation has recently achieved remarkable progress, but still suffers from two major limitations: (1) ineffective representation of depth data and (2) insufficient integration of different modalities. This paper proposes a novel
Face identification/recognition has significantly advanced over the past years. However, most of the proposed approaches rely on static RGB frames and on neutral facial expressions. This has two disadvantages. First, important facial shape cues are i
In this paper, we present GCN-Denoiser, a novel feature-preserving mesh denoising method based on graph convolutional networks (GCNs). Unlike previous learning-based mesh denoising methods that exploit hand-crafted or voxel-based representations for
Predicting DNA-protein binding is an important and classic problem in bioinformatics. Convolutional neural networks have outperformed conventional methods in modeling the sequence specificity of DNA-protein binding. However, none of the studies has u