ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimation of Individualized Decision Rules Based on an Optimized Covariate-Dependent Equivalent of Random Outcomes

54   0   0.0 ( 0 )
 نشر من قبل Zhengling Qi
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent exploration of optimal individualized decision rules (IDRs) for patients in precision medicine has attracted a lot of attention due to the heterogeneous responses of patients to different treatments. In the existing literature of precision medicine, an optimal IDR is defined as a decision function mapping from the patients covariate space into the treatment space that maximizes the expected outcome of each individual. Motivated by the concept of Optimized Certainty Equivalent (OCE) introduced originally in cite{ben1986expected} that includes the popular conditional-value-of risk (CVaR) cite{rockafellar2000optimization}, we propose a decision-rule based optimized covariates dependent equivalent (CDE) for individualized decision making problems. Our proposed IDR-CDE broadens the existing expected-mean outcome framework in precision medicine and enriches the previous concept of the OCE. Numerical experiments demonstrate that our overall approach outperforms existing methods in estimating optimal IDRs under heavy-tail distributions of the data.



قيم البحث

اقرأ أيضاً

With the emergence of precision medicine, estimating optimal individualized decision rules (IDRs) has attracted tremendous attention in many scientific areas. Most existing literature has focused on finding optimal IDRs that can maximize the expected outcome for each individual. Motivated by complex individualized decision making procedures and popular conditional value at risk (CVaR) measures, we propose a new robust criterion to estimate optimal IDRs in order to control the average lower tail of the subjects outcomes. In addition to improving the individualized expected outcome, our proposed criterion takes risks into consideration, and thus the resulting IDRs can prevent adverse events. The optimal IDR under our criterion can be interpreted as the decision rule that maximizes the ``worst-case scenario of the individualized outcome when the underlying distribution is perturbed within a constrained set. An efficient non-convex optimization algorithm is proposed with convergence guarantees. We investigate theoretical properties for our estimated optimal IDRs under the proposed criterion such as consistency and finite sample error bounds. Simulation studies and a real data application are used to further demonstrate the robust performance of our method.
108 - Wenchuan Guo , Xiao-hua Zhou , 2018
With a large number of baseline covariates, we propose a new semi-parametric modeling strategy for heterogeneous treatment effect estimation and individualized treatment selection, which are two major goals in personalized medicine. We achieve the fi rst goal through estimating a covariate-specific treatment effect (CSTE) curve modeled as an unknown function of a weighted linear combination of all baseline covariates. The weight or the coefficient for each covariate is estimated by fitting a sparse semi-parametric logistic single-index coefficient model. The CSTE curve is estimated by a spline-backfitted kernel procedure, which enables us to further construct a simultaneous confidence band (SCB) for the CSTE curve under a desired confidence level. Based on the SCB, we find the subgroups of patients that benefit from each treatment, so that we can make individualized treatment selection. The innovations of the proposed method are three-fold. First, the proposed method can quantify variability associated with the estimated optimal individualized treatment rule with high-dimensional covariates. Second, the proposed method is very flexible to depict both local and global associations between the treatment and baseline covariates in the presence of high-dimensional covariates, and thus it enjoys flexibility while achieving dimensionality reduction. Third, the SCB achieves the nominal confidence level asymptotically, and it provides a uniform inferential tool in making individualized treatment decisions.
Recent development in the data-driven decision science has seen great advances in individualized decision making. Given data with individual covariates, treatment assignments and outcomes, policy makers best individualized treatment rule (ITR) that m aximizes the expected outcome, known as the value function. Many existing methods assume that the training and testing distributions are the same. However, the estimated optimal ITR may have poor generalizability when the training and testing distributions are not identical. In this paper, we consider the problem of finding an optimal ITR from a restricted ITR class where there is some unknown covariate changes between the training and testing distributions. We propose a novel distributionally robust ITR (DR-ITR) framework that maximizes the worst-case value function across the values under a set of underlying distributions that are close to the training distribution. The resulting DR-ITR can guarantee the performance among all such distributions reasonably well. We further propose a calibrating procedure that tunes the DR-ITR adaptively to a small amount of calibration data from a target population. In this way, the calibrated DR-ITR can be shown to enjoy better generalizability than the standard ITR based on our numerical studies.
303 - Crystal T. Nguyen 2019
The field of precision medicine aims to tailor treatment based on patient-specific factors in a reproducible way. To this end, estimating an optimal individualized treatment regime (ITR) that recommends treatment decisions based on patient characteri stics to maximize the mean of a pre-specified outcome is of particular interest. Several methods have been proposed for estimating an optimal ITR from clinical trial data in the parallel group setting where each subject is randomized to a single intervention. However, little work has been done in the area of estimating the optimal ITR from crossover study designs. Such designs naturally lend themselves to precision medicine, because they allow for observing the response to multiple treatments for each patient. In this paper, we introduce a method for estimating the optimal ITR using data from a 2x2 crossover study with or without carryover effects. The proposed method is similar to policy search methods such as outcome weighted learning; however, we take advantage of the crossover design by using the difference in responses under each treatment as the observed reward. We establish Fisher and global consistency, present numerical experiments, and analyze data from a feeding trial to demonstrate the improved performance of the proposed method compared to standard methods for a parallel study design.
Increasing penetration of wind and renewable generation poses significant challenges to the power system operations and reliability. This paper considers the real-time optimal transmission switching (OTS) problem for determining the generation dispat ch and network topology that can account for uncertain energy resources. To efficiently solve the resultant two-stage stochastic program, we propose a tractable linear decision rule (LDR) based approximation solution that can eliminate the uncertainty variables and lead to fixed number of constraints. The proposed LDR approach can guarantee feasibility, and significantly reduces the computational complexity of existing approaches that grows with the number of randomly generated samples of uncertainty. Numerical studies on IEEE test cases demonstrate the high approximation accuracy of the proposed LDR solution and its computational efficiency for real-time OTS implementations.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا