ترغب بنشر مسار تعليمي؟ اضغط هنا

Harmonic Gradients on Higher Dimensional Sierpinski Gaskets

176   0   0.0 ( 0 )
 نشر من قبل Luke Rogers
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider criteria for the differentiability of functions with continuous Laplacian on the Sierpinski Gasket and its higher-dimensional variants $SG_N$, $N>3$, proving results that generalize those of Teplyaev. When $SG_N$ is equipped with the standard Dirichlet form and measure $mu$ we show there is a full $mu$-measure set on which continuity of the Laplacian implies existence of the gradient $ abla u$, and that this set is not all of $SG_N$. We also show there is a class of non-uniform measures on the usual Sierpinski Gasket with the property that continuity of the Laplacian implies the gradient exists and is continuous everywhere, in sharp contrast to the case with the standard measure.



قيم البحث

اقرأ أيضاً

76 - Kai Zhao , Wei-Shih Yang 2021
We consider the discrete time quantum random walks on a Sierpinski gasket. We study the hitting probability as the level of fractal goes to infinity in terms of their localization exponents $beta_w$ , total variation exponents $delta_w$ and relative entropy exponents $eta_w$ . We define and solve the amplitude Green functions recursively when the level of the fractal graph goes to infinity. We obtain exact recursive formulas for the amplitude Green functions, based on which the hitting probabilities and expectation of the first-passage time are calculated. Using the recursive formula with the aid of Monte Carlo integration, we evaluate their numerical values. We also show that when the level of the fractal graph goes to infinity, with probability 1, the quantum random walks will return to origin, i.e., the quantum walks on Sierpinski gasket are recurrent.
147 - Shiping Cao 2020
We study the convergence of resistance metrics and resistance forms on a converging sequence of spaces. As an application, we study the existence and uniqueness of self-similar Dirichlet forms on Sierpinski gaskets with added rotated triangles. The f ractals depend on a parameter in a continuous way. When the parameter is irrational, the fractal is not post critically finite (p.c.f.), and there are infinitely many ways that two cells intersect. In this case, we will define the Dirichlet form as a limit in some $Gamma$-convergence sense of the Dirichlet forms on p.c.f. fractals that approximate it.
We study energy measures on SG based on harmonic functions. We characterize the positive energy measures through studying the bounds of Radon-Nikodym derivatives with respect to the Kusuoka measure. We prove a limited continuity of the derivative on the graph $V_*$ and express the average value of the derivative on a whole cell as a weighted average of the values on the boundary vertices. We also prove some characterizations and properties of the weights.
68 - Pisheng Ding 2018
For a harmonic function u on Euclidean space, this note shows that its gradient is essentially determined by the geometry of its level hypersurfaces. Specifically, the factor by which |grad(u)| changes along a gradient flow is completely determined b y the mean curvature of the level hypersurfaces intersecting the flow.
Consider spanning trees on the two-dimensional Sierpinski gasket SG(n) where stage $n$ is a non-negative integer. For any given vertex $x$ of SG(n), we derive rigorously the probability distribution of the degree $j in {1,2,3,4}$ at the vertex and it s value in the infinite $n$ limit. Adding up such probabilities of all the vertices divided by the number of vertices, we obtain the average probability distribution of the degree $j$. The corresponding limiting distribution $phi_j$ gives the average probability that a vertex is connected by 1, 2, 3 or 4 bond(s) among all the spanning tree configurations. They are rational numbers given as $phi_1=10957/40464$, $phi_2=6626035/13636368$, $phi_3=2943139/13636368$, $phi_4=124895/4545456$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا