ﻻ يوجد ملخص باللغة العربية
We present a previously unexplored forward-mode differentiation method for Maxwells equations, with applications in the field of sensitivity analysis. This approach yields exact gradients and is similar to the popular adjoint variable method, but provides a significant improvement in both memory and speed scaling for problems involving several output parameters, as we analyze in the context of finite-difference time-domain (FDTD) simulations. Furthermore, it provides an exact alternative to numerical derivative methods, based on finite-difference approximations. To demonstrate the usefulness of the method, we perform sensitivity analysis of two problems. First we compute how the spatial near-field intensity distribution of a scatterer changes with respect to its dielectric constant. Then, we compute how the spectral power and coupling efficiency of a surface grating coupler changes with respect to its fill factor.
We derive the discretized Maxwells equations using the discrete variational derivative method (DVDM), calculate the evolution equation of the constraint, and confirm that the equation is satisfied at the discrete level. Numerical simulations showed t
We propose a controllability method for the numerical solution of time-harmonic Maxwells equations in their first-order formulation. By minimizing a quadratic cost functional, which measures the deviation from periodicity, the controllability method
We introduce in this work the normalizing field flows (NFF) for learning random fields from scattered measurements. More precisely, we construct a bijective transformation (a normalizing flow characterizing by neural networks) between a Gaussian rand
We demonstrate that soliton-plasmon bound states appear naturally as propagating eigenmodes of nonlinear Maxwells equations for a metal/dielectric/Kerr interface. By means of a variational method, we give an explicit and simplified expression for the
A matrix basis formulation is introduced to represent the 3 x 3 dyadic Greens functions in the frequency domain for the Maxwells equations and the elastic wave equation in layered media. The formulation can be used to decompose the Maxwells Greens fu