ﻻ يوجد ملخص باللغة العربية
We propose a controllability method for the numerical solution of time-harmonic Maxwells equations in their first-order formulation. By minimizing a quadratic cost functional, which measures the deviation from periodicity, the controllability method determines iteratively a periodic solution in the time domain. At each conjugate gradient iteration, the gradient of the cost functional is simply computed by running any time-dependent simulation code forward and backward for one period, thus leading to a non-intrusive implementation easily integrated into existing software. Moreover, the proposed algorithm automatically inherits the parallelism, scalability, and low memory footprint of the underlying time-domain solver. Since the time-periodic solution obtained by minimization is not necessarily unique, we apply a cheap post-processing filtering procedure which recovers the time-harmonic solution from any minimizer. Finally, we present a series of numerical examples which show that our algorithm greatly speeds up the convergence towards the desired time-harmonic solution when compared to simply running the time-marching code until the time-harmonic regime is eventually reached.
This work is devoted to the development and analysis of a linearization algorithm for microscopic elliptic equations, with scaled degenerate production, posed in a perforated medium and constrained by the homogeneous Neumann-Dirichlet boundary condit
We propose a new iterative scheme to compute the numerical solution to an over-determined boundary value problem for a general quasilinear elliptic PDE. The main idea is to repeatedly solve its linearization by using the quasi-reversibility method wi
High-precision numerical scheme for nonlinear hyperbolic evolution equations is proposed based on the spectral method. The detail discretization processes are discussed in case of one-dimensional Klein-Gordon equations. In conclusion, a numerical sch
It is well known that, with a particular choice of norm, the classical double-layer potential operator $D$ has essential norm $<1/2$ as an operator on the natural trace space $H^{1/2}(Gamma)$ whenever $Gamma$ is the boundary of a bounded Lipschitz do
A new finite difference method on irregular, locally perturbed rectangular grids has been developed for solving electromagnetic waves around curved perfect electric conductors (PEC). This method incorporates the back and forth error compensation and