ﻻ يوجد ملخص باللغة العربية
While a clean driven system generically absorbs energy until it reaches `infinite temperature, it may do so very slowly exhibiting what is known as a prethermal regime. Here, we show that the emergence of an additional approximately conserved quantity in a periodically driven (Floquet) system can give rise to an analogous long-lived regime. This can allow for non-trivial dynamics, even from initial states that are at a high or infinite temperature with respect to an effective Hamiltonian governing the prethermal dynamics. We present concrete settings with such a prethermal regime, one with a period-doubled (time-crystalline) response. We also present a direct diagnostic to distinguish this prethermal phenomenon from its infinitely long-lived many-body localised cousin. We apply these insights to a model of the recent NMR experiments by Rovny et al., [Phys. Rev. Lett. 120, 180603 (2018)] which, intriguingly, detected signatures of a Floquet time crystal in a clean three-dimensional material. We show that a mild but subtle variation of their driving protocol can increase the lifetime of the time-crystalline signal by orders of magnitude.
Prethermalization refers to the physical phenomenon where a system evolves toward some long-lived non-equilibrium steady state before eventual thermalization sets in. One general scenario where this occurs is in driven systems with dynamics governed
Long-range interacting systems such as nitrogen vacancy centers in diamond and trapped ions serve as useful experimental setups to probe a range of nonequilibrium many-body phenomena. In particular, via driving, various effective Hamiltonians with ph
The aging in a Heisenberg-like spin glass Ag(11 at% Mn) is investigated by measurements of the zero field cooled magnetic relaxation at a constant temperature after small temperature shifts $|Delta T/T_g| < 0.012$. A crossover from fully accumulative
Spin glasses are a longstanding model for the sluggish dynamics that appears at the glass transition. However, spin glasses differ from structural glasses for a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by appl
We study the level-spacing statistics for non-interacting Hamiltonians defined on the two-dimensional quasiperiodic Ammann--Beenker (AB) tiling. When applying the numerical procedure of unfolding, these spectral properties in each irreducible sector