ترغب بنشر مسار تعليمي؟ اضغط هنا

A Framework for Model Search Across Multiple Machine Learning Implementations

107   0   0.0 ( 0 )
 نشر من قبل Kazuyuki Shudo
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Several recently devised machine learning (ML) algorithms have shown improved accuracy for various predictive problems. Model searches, which explore to find an optimal ML algorithm and hyperparameter values for the target problem, play a critical role in such improvements. During a model search, data scientists typically use multiple ML implementations to construct several predictive models; however, it takes significant time and effort to employ multiple ML implementations due to the need to learn how to use them, prepare input data in several different formats, and compare their outputs. Our proposed framework addresses these issues by providing simple and unified coding method. It has been designed with the following two attractive features: i) new machine learning implementations can be added easily via common interfaces between the framework and ML implementations and ii) it can be scaled to handle large model configuration search spaces via profile-based scheduling. The results of our evaluation indicate that, with our framework, implementers need only write 55-144 lines of code to add a new ML implementation. They also show that ours was the fastest framework for the HIGGS dataset, and the second-fastest for the SECOM dataset.



قيم البحث

اقرأ أيضاً

Recent advances in Deep Neural Networks (DNN) and Edge Computing have made it possible to automatically analyze streams of videos from home/security cameras over hierarchical clusters that include edge devices, close to the video source, as well as r emote cloud compute resources. However, preserving the privacy and confidentiality of users sensitive data as it passes through different devices remains a concern to most users. Private user data is subject to attacks by malicious attackers or misuse by internal administrators who may use the data in activities that are not explicitly approved by the user. To address this challenge, we present Serdab, a distributed orchestration framework for deploying deep neural network computation across multiple secure enclaves (e.g., Intel SGX). Secure enclaves provide a guarantee on the privacy of the data/code deployed inside it. However, their limited hardware resources make them inefficient when solely running an entire deep neural network. To bridge this gap, Serdab presents a DNN partitioning strategy to distribute the layers of the neural network across multiple enclave devices or across an enclave device and other hardware accelerators. Our partitioning strategy achieves up to 4.7x speedup compared to executing the entire neural network in one enclave.
A major driver behind the success of modern machine learning algorithms has been their ability to process ever-larger amounts of data. As a result, the use of distributed systems in both research and production has become increasingly prevalent as a means to scale to this growing data. At the same time, however, distributing the learning process can drastically complicate the implementation of even simple algorithms. This is especially problematic as many machine learning practitioners are not well-versed in the design of distributed systems, let alone those that have complicated communication topologies. In this work we introduce Launchpad, a programming model that simplifies the process of defining and launching distributed systems that is specifically tailored towards a machine learning audience. We describe our framework, its design philosophy and implementation, and give a number of examples of common learning algorithms whose designs are greatly simplified by this approach.
The performance of modern machine learning methods highly depends on their hyperparameter configurations. One simple way of selecting a configuration is to use default settings, often proposed along with the publication and implementation of a new al gorithm. Those default values are usually chosen in an ad-hoc manner to work good enough on a wide variety of datasets. To address this problem, different automatic hyperparameter configuration algorithms have been proposed, which select an optimal configuration per dataset. This principled approach usually improves performance but adds additional algorithmic complexity and computational costs to the training procedure. As an alternative to this, we propose learning a set of complementary default values from a large database of prior empirical results. Selecting an appropriate configuration on a new dataset then requires only a simple, efficient and embarrassingly parallel search over this set. We demonstrate the effectiveness and efficiency of the approach we propose in comparison to random search and Bayesian Optimization.
This paper introduces RankMap, a platform-aware end-to-end framework for efficient execution of a broad class of iterative learning algorithms for massive and dense datasets. Our framework exploits data structure to factorize it into an ensemble of l ower rank subspaces. The factorization creates sparse low-dimensional representations of the data, a property which is leveraged to devise effective mapping and scheduling of iterative learning algorithms on the distributed computing machines. We provide two APIs, one matrix-based and one graph-based, which facilitate automated adoption of the framework for performing several contemporary learning applications. To demonstrate the utility of RankMap, we solve sparse recovery and power iteration problems on various real-world datasets with up to 1.8 billion non-zeros. Our evaluations are performed on Amazon EC2 and IBM iDataPlex servers using up to 244 cores. The results demonstrate up to two orders of magnitude improvements in memory usage, execution speed, and bandwidth compared with the best reported prior work, while achieving the same level of learning accuracy.
The promise of machine learning has been explored in a variety of scientific disciplines in the last few years, however, its application on first-principles based computationally expensive tools is still in nascent stage. Even with the advances in co mputational resources and power, transient simulations of large-scale dynamic systems using a variety of the first-principles based computational tools are still limited. In this work, we propose an ensemble approach where we combine one such computationally expensive tool, called discrete element method (DEM), with a time-series forecasting method called auto-regressive integrated moving average (ARIMA) and machine-learning methods to significantly reduce the computational burden while retaining model accuracy and performance. The developed machine-learning model shows good predictability and agreement with the literature, demonstrating its tremendous potential in scientific computing.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا