ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal nature of charmonium transverse momentum spectra from Au-Au collisions at the highest energies available at the BNL Relativistic Heavy Ion Collider (RHIC)

125   0   0.0 ( 0 )
 نشر من قبل Sergiy Akkelin
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the transverse momentum distribution of $J/psi$ mesons produced in Au + Au collisions at the top RHIC energy within a blast-wave model that accounts for a possible inhomogeneity of the charmonium distribution and/or flow fluctuations. The results imply that the transverse momentum spectra of$J/psi$, $phi$ and $Omega$ hadrons measured at the RHIC can be described well if kinetic freeze-out takes place just after chemical freeze-out for these particles.



قيم البحث

اقرأ أيضاً

Different orientations of $alpha$-clustered carbon nuclei colliding with heavy ions can result in a large variation in the value of anisotropic flow. Thus, photon flow observables from clustered ${rm^{12}C}$ and ${rm^{197}Au}$ collisions could be a p otential probe to study the `direct photon puzzle. We calculate the transverse momentum spectra and anisotropic flow coefficients ($v_n$) of thermal photons from collisions of triangular $alpha$-clustered carbon and gold at $sqrt{s_{rm NN}}=200$ GeV at RHIC using a hydrodynamic model framework and compare the results with those obtained from unclustered carbon and gold collisions. The slope of the thermal photon spectra is found to vary moderately for different orientations of collisions. However, we find that the elliptic ($v_2$) and triangular flow ($v_3$) coefficients of direct photons for specific configurations are significantly larger and predominantly formed by the QGP radiation. A strong anti-correlation between initial spatial ellipticity and triangularity is observed in an event-by-event framework of $alpha$-clustered ${rm C+Au}$ collisions. These special features provide us an opportunity to detect the exotic nature of cluster structure inside carbon nucleus using the photon probe in the future experiments.
Fluctuations of conserved quantities are believed to be sensitive observables to probe the signature of the QCD phase transition and critical point. It was argued recently that measuring the genuine correlation functions (CFs) could provide cleaner i nformation on possible nontrivial dynamics in heavy-ion collisions.With the AMPT (a multiphase transport) model, the centrality and energy dependence of various orders of CFs of net protons in Au + Au collisions at $sqrt{s_mathrm{NN}}$=7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV are investigated. The model results show that the number of antiprotons is important and should be taken into account in the calculation of CFs at high energy and/or in peripheral collisions. It is also found that the contribution of antiprotons is more important for higher order correlations than for lower ones. The CFs of antiprotons and mixed correlations play roles comparable to those of protons at high energies. Finally, we make comparisons between the model calculation and experimental data measured in the STAR experiment at the BNL Relativistic Heavy Ion Collider.
We report a systematic measurement of cumulants, $C_{n}$, for net-proton, proton and antiproton multiplicity distributions, and correlation functions, $kappa_n$, for proton and antiproton multiplicity distributions up to the fourth order in Au+Au col lisions at $sqrt{s_{mathrm {NN}}}$ = 7.7, 11.5, 14.5, 19.6, 27, 39, 54.4, 62.4 and 200 GeV. The $C_{n}$ and $kappa_n$ are presented as a function of collision energy, centrality and kinematic acceptance in rapidity, $y$, and transverse momentum, $p_{T}$. The data were taken during the first phase of the Beam Energy Scan (BES) program (2010 -- 2017) at the BNL Relativistic Heavy Ion Collider (RHIC) facility. The measurements are carried out at midrapidity ($|y| <$ 0.5) and transverse momentum 0.4 $<$ $p_{rm T}$ $<$ 2.0 GeV/$c$, using the STAR detector at RHIC. We observe a non-monotonic energy dependence ($sqrt{s_{mathrm {NN}}}$ = 7.7 -- 62.4 GeV) of the net-proton $C_{4}$/$C_{2}$ with the significance of 3.1$sigma$ for the 0-5% central Au+Au collisions. This is consistent with the expectations of critical fluctuations in a QCD-inspired model. Thermal and transport model calculations show a monotonic variation with $sqrt{s_{mathrm {NN}}}$. For the multiparticle correlation functions, we observe significant negative values for a two-particle correlation function, $kappa_2$, of protons and antiprotons, which are mainly due to the effects of baryon number conservation. Furthermore, it is found that the four-particle correlation function, $kappa_4$, of protons plays a role in determining the energy dependence of proton $C_4/C_1$ below 19.6 GeV, which cannot be understood by the effect of baryon number conservation.
177 - Yu.B. Ivanov 2013
Transverse-mass spectra, their inverse slopes and mean transverse masses in relativistic collisions of heavy nuclei are analyzed in a wide range of incident energies 2.7 GeV $le sqrt{s_{NN}}le$ 39 GeV. The analysis is performed within the three-fluid model employing three different equations of state (EoSs): a purely hadronic EoS, an EoS with the first-order phase transition and that with a smooth crossover transition into deconfined state. Calculations show that inverse slopes and mean transverse masses of all the species (with the exception of antibaryons within the hadronic scenario) exhibit a step-like behavior similar to that observed for mesons and protons in available experimental data. This step-like behavior takes place for all considered EoSs and results from the freeze-out dynamics rather than is a signal of the deconfinement transition. A good reproduction of experimental inverse slopes and mean transverse masses for light species (up to proton) is achieved within all the considered scenarios. The freeze-out parameters are precisely the same as those used for reproduction of particles yields in previous papers of this series. This became possible because the freeze-out stage is not completely equilibrium.
128 - J. H. Liu , S. Plumari , S. K. Das 2019
We study the diffusion of charm and beauty in the early stage of high energy nuclear collisions at RHIC and LHC energies, considering the interaction of these heavy quarks with the evolving Glasma by means of the Wong equations. In comparison with pr evious works, we add the longitudinal expansion as well as we estimate the effect of energy loss due to gluon radiation. We find that heavy quarks diffuse in the strong transverse color fields in the very early stage (0.2-0.3 fm/c) and this leads to a suppression at low $p_T$ and enhancement at intermediate low $p_T$. The shape of the observed nuclear suppression factor obtained within our calculations is in qualitative agreement with the experimental results of the same quantity for $D-$mesons in proton-nucleus collisions. We compute the nuclear suppression factor in nucleus-nucleus collisions as well, for both charm and beauty, finding a substantial impact of the evolving Glasma phase on these, suggesting that initialization of heavy quarks spectra in the quark-gluon plasma phase should not neglect the early evolution in the strong gluon fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا