ترغب بنشر مسار تعليمي؟ اضغط هنا

The kinematical and space structures of IC 2391 open cluster and moving group with Gaia-DR2

65   0   0.0 ( 0 )
 نشر من قبل Sergei Vereshchagin
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The kinematical parameters, spatial shape and structure of the open cluster IC 2391 and the associated stellar stream are studied here using Gaia-DR2 (GDR2) astrometry data. The apex positions are determined for the open cluster IC 2391 (data taken from Cantat-Gaudin et al.) and for the kinematical streams stars mentioned in Montes et al. using both convergent point and AD-diagram methods. The values of apex coordinates identified. The results are in good agreement with the previously calculated values. The positions of the stars in the disk and the spatial dispersion velocities are determined. The paths of cluster and associated stream are traced in the disk by orbit calculation back in time to their places of formation. A possible genetic relationship between the cluster and the stream has been detected. The approximation of the spatial and kinematical shape of the stream and the cluster is made. According to this study, even though currently the cluster and the stream seem to have spatial difference in their locations but they appear to have formed in the same region of the Galactic disk.



قيم البحث

اقرأ أيضاً

IC 166 is an intermediate-age open cluster ($sim 1$ Gyr) which lies in the transition zone of the metallicity gradient in the outer disc. Its location, combined with our very limited knowledge of its salient features, make it an interesting object of study. We present the first high-resolution spectroscopic and precise kinematical analysis of IC 166, which lies in the outer disc with $R_{GC} sim 12.7$ kpc. High resolution textit{H}-band spectra were analyzed using observations from the SDSS-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. We made use of the Brussels Automatic Stellar Parameter (BACCHUS) code to provide chemical abundances based on a line-by-line approach for up to eight chemical elements (Mg, Si, Ca, Ti, Al, K, Mn and Fe). The $alpha-$element (Mg, Si, Ca and whenever available Ti) abundances, and their trends with Fe abundances have been analysed for a total of 13 high-likelihood cluster members. No significant abundance scatter was found in any of the chemical species studied. Combining the positional, heliocentric distance, and kinematic information we derive, for the first time, the probable orbit of IC 166 within a Galactic model including a rotating boxy bar, and found that it is likely that IC 166 formed in the Galactic disc, supporting its nature as an unremarkable Galactic open cluster with an orbit bound to the Galactic plane.
400 - V. Straiv{z}ys 2019
The open cluster IC 4996 in Cygnus and its vicinity are investigated by applying a two-dimensional photometric classification of stars measured in the Vilnius seven-color photometric system. Cluster members are identified by applying distances based on the Gaia DR2 parallaxes and the point vector diagram of the Gaia DR2 proper motions. For some B-type stars, spectroscopic MK types are also obtained from the Asiago spectra and collected from the literature. New parameters of the cluster are derived. The interstellar extinction $A_V$ covers a wide range of values, from 1.3 to 2.4 mag; the mean value in the central part of the cluster is 1.8 mag. The cluster distance is 1915 $pm$ 110 pc, and its age is within 8-10 Myr. The cluster exhibits a long sequence from early-B to G stars, where stars cooler than B8 are in the pre-main-sequence stage. The plot of extinction versus distance shows a steep rise of $A_V$ up to 1.6 mag at 700-800 pc, which is probably related to dust clouds at the edge of the Great Cygnus Rift. The next increase in extinction by an additional 0.8 mag at $d$ $geq$ 1.7 kpc is probably related to the associations Cyg OB1 and Cyg OB3. The cluster IC 4996 does not belong to the Cyg OB1 association, which is located closer to the Sun, at 1682 $pm$ 116 pc. It seems likely that the cluster and the surrounding O-B stars have a common origin with the nearby association Cyg OB3 since Gaia data show that these stellar groups are located at a similar distance.
Context. Open clusters are very good tracers of the evolution of the Galactic disc. Thanks to Gaia, their kinematics can be investigated with an unprecedented precision and accuracy. Aims. The distribution of open clusters in the 6D phase space is re visited with Gaia DR2. Methods. The weighted mean radial velocity of open clusters was determined, using the most probable members available from a previous astrometric investigation that also provided mean parallaxes and proper motions. Those parameters, all derived from Gaia DR2 only, were combined to provide the 6D phase space information of 861 clusters. The velocity distribution of nearby clusters was investigated, as well as the spatial and velocity distributions of the whole sample as a function of age. A high quality subsample was used to investigate some possible pairs and groups of clusters sharing the same Galactic position and velocity. Results. For the high quality sample that has 406 clusters, the median uncertainty of the weighted mean radial velocity is 0.5 km/s. The accuracy, assessed by comparison to ground-based high resolution spectroscopy, is better than 1 km/s. Open clusters nicely follow the velocity distribution of field stars in the close Solar neighbourhood previously revealed by Gaia DR2. As expected, the vertical distribution of young clusters is very flat but the novelty is the high precision to which this can be seen. The dispersion of vertical velocities of young clusters is at the level of 5 km/s. Clusters older than 1 Gyr span distances to the Galactic plane up to 1 kpc with a vertical velocity dispersion of 14 km/s, typical of the thin disc. Five pairs of clusters and one group with five members are possibly physically related. Other binary candidates previously identified turn out to be chance alignment.
We have obtained new photometry and intermediate resolution ($Delta lambda = 2.7$ AA ) spectra of 19 of these objects (14.9 $le$ $I_c$ $le$ 17.5) in order to confirm cluster membership. We identify 15 of our targets as likely cluster members based on their $VRI$ photometry, spectral types, radial velocity, and H$alpha$ emission strengths. Higher S/N spectra were obtained for 8 of these probable cluster members in order to measure the strength of the lithium 6708 AA doublet and thus obtain an estimate of the clusters age. One of these 8 stars has a definite lithium detection and two other (fainter) stars have possible lithium detections. A color-magnitude diagram for our program objects shows that the lithium depletion boundary in IC~2391 is at $I_c$=16.2. Using recent theoretical model predictions, we derive an age for IC~2391 of 53$pm$5 Myr. While this is considerably older than the age most commonly attributed for this cluster ($sim$35 Myr) this result for IC~2391 is comparable those recently derived for the Pleiades and Alpha Persei clusters and can be explained by new models for high mass stars that incorporate a modest amount of convective core overshooting.
The estimation of the main parameters of star clusters is significant in astrophysical studies. The most important aspect of using the Gaia DR2 survey lies in the positions, parallax, and proper motions of cluster stars with homogeneous photometry th at make the membership probability determine with high accuracy. In this respect, depending on Gaia DR2 database, an analysis of the open star cluster Melotte 72 is taking place here. It is located at a distance of 2345+/-108 pc with an age of 1.0+/-0.5 Gyr. In studying the radial density profile, the radius is found to be 5.0+/-0.15 arcmin. The reddening, the luminosity and mass functions, the total mass of the cluster, and the galactic geometrical distances (X_Sun, Y_Sun, Z_Sun), and the distance from the galactic center (R_g ) have been estimated as well. Our study has shown a dynamical relaxation behavior of Melotte 72.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا