ترغب بنشر مسار تعليمي؟ اضغط هنا

An investigation of open cluster Melotte 72 using Gaia DR2

55   0   0.0 ( 0 )
 نشر من قبل Yasser Hendy
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The estimation of the main parameters of star clusters is significant in astrophysical studies. The most important aspect of using the Gaia DR2 survey lies in the positions, parallax, and proper motions of cluster stars with homogeneous photometry that make the membership probability determine with high accuracy. In this respect, depending on Gaia DR2 database, an analysis of the open star cluster Melotte 72 is taking place here. It is located at a distance of 2345+/-108 pc with an age of 1.0+/-0.5 Gyr. In studying the radial density profile, the radius is found to be 5.0+/-0.15 arcmin. The reddening, the luminosity and mass functions, the total mass of the cluster, and the galactic geometrical distances (X_Sun, Y_Sun, Z_Sun), and the distance from the galactic center (R_g ) have been estimated as well. Our study has shown a dynamical relaxation behavior of Melotte 72.

قيم البحث

اقرأ أيضاً

We present a comprehensive analysis (photometric and kinematical) of poorly studied open cluster NGC 4337 using 2MASS, WISE, APASS, and Gaia~DR2 database. By determining the membership probabilities of stars, we identified 624 most probable members w ith membership probability higher than $50%$ by using proper motion and parallax data taken from Gaia~DR2. The mean proper motion of the cluster is obtained as $mu_{x}=-8.83pm0.01$ and $mu_{y}=1.49pm0.006$ mas yr$^{-1}$. We find the normal interstellar extinction towards the cluster region. The radial distribution of members provides a cluster radius of 7.75 arcmin (5.63 pc). The estimated age of $1600pm180$ Myr indicates that NGC 4337 is an old open cluster with a bunch of red giant stars. The overall mass function slope for main-sequence stars is found as $1.46pm0.18$ within the mass range 0.75$-$2.0 $M_odot$, which is in fair agreement with Salpeters value (x=1.35) within uncertainty. The present study demonstrates that NGC 4337 is a dynamically relaxed open cluster. Using the Galactic potential model, Galactic orbits are obtained for NGC 4337. We found that this object follows a circular path around the Galactic center. Under the kinematical analysis, we compute the apex coordinates $(A, D)$ by using two methods: (i) the classical convergent point method and (ii) the AD-diagram method. The obtained coordinates are: $(A_{conv}, D_{conv})$ = (96$^{textrm{o}}$.27 $pm$ 0$^{textrm{o}}$.10, 13$^{textrm{o}}$.14 $pm$ 0$^{textrm{o}}$.27) $&$ $(A_circ, D_circ)$ = (100$^{textrm{o}}$.282 $pm$ 0$^{textrm{o}}$.10, 9$^{textrm{o}}$.577 $pm$ 0$^{textrm{o}}$.323) respectively. We also computed the Velocity Ellipsoid Parameters (VEPs), matrix elements ($mu_{ij}$), direction cosines ($l_j$, $m_j$, $n_j$) and the Galactic longitude of the vertex ($l_2$).
Context. Open clusters are very good tracers of the evolution of the Galactic disc. Thanks to Gaia, their kinematics can be investigated with an unprecedented precision and accuracy. Aims. The distribution of open clusters in the 6D phase space is re visited with Gaia DR2. Methods. The weighted mean radial velocity of open clusters was determined, using the most probable members available from a previous astrometric investigation that also provided mean parallaxes and proper motions. Those parameters, all derived from Gaia DR2 only, were combined to provide the 6D phase space information of 861 clusters. The velocity distribution of nearby clusters was investigated, as well as the spatial and velocity distributions of the whole sample as a function of age. A high quality subsample was used to investigate some possible pairs and groups of clusters sharing the same Galactic position and velocity. Results. For the high quality sample that has 406 clusters, the median uncertainty of the weighted mean radial velocity is 0.5 km/s. The accuracy, assessed by comparison to ground-based high resolution spectroscopy, is better than 1 km/s. Open clusters nicely follow the velocity distribution of field stars in the close Solar neighbourhood previously revealed by Gaia DR2. As expected, the vertical distribution of young clusters is very flat but the novelty is the high precision to which this can be seen. The dispersion of vertical velocities of young clusters is at the level of 5 km/s. Clusters older than 1 Gyr span distances to the Galactic plane up to 1 kpc with a vertical velocity dispersion of 14 km/s, typical of the thin disc. Five pairs of clusters and one group with five members are possibly physically related. Other binary candidates previously identified turn out to be chance alignment.
In this paper, we present astrophysical parameters of the open cluster King 13 based on the VI CCD and 2MASS JHKs photometric data. This is a poorly studied cluster, for which new results have been found in the present work. To identify probable memb ers, we use proper motion data from Gaia DR2 catalogue. The mean proper motion of the cluster is determined as -2.8 pm 0.2 and -0.88 pm 0.14 mas yr{-1} and cluster extent is derived as 3.2. Using color-magnitude diagrams, we estimate the age and distance of the cluster as 510 pm 60 Myr and 3.84 pm 0.15 kpc respectively. Interstellar reddening E(B-V) in the direction of the cluster is determined as 0.80 pm 0.2 mag using color-color diagram. Mass function slope of the cluster is found to be comparable with the Salpeter value. The total mass of this cluster is derived as 270 M_{odot}. The present analysis shows that King 13 is a dynamically relaxed cluster.
Using data from Gaia DR2, we study the radial number density profiles of the Galactic globular cluster sample. Proper motions are used for accurate membership selection, especially crucial in the cluster outskirts. Due to the severe crowding in the c entres, the Gaia data is supplemented by literature data from HST and surface brightness measurements, where available. This results in 81 clusters with a complete density profile covering the full tidal radius (and beyond) for each cluster. We model the density profiles using a set of single-mass models ranging from King and Wilson models to generalised lowered isothermal limepy models and the recently introduced spes models, which allow for the inclusion of potential escapers. We find that both King and Wilson models are too simple to fully reproduce the density profiles, with King (Wilson) models on average underestimating(overestimating) the radial extent of the clusters. The truncation radii derived from the limepy models are similar to estimates for the Jacobi radii based on the cluster masses and their orbits. We show clear correlations between structural and environmental parameters, as a function of Galactocentric radius and integrated luminosity. Notably, the recovered fraction of potential escapers correlates with cluster pericentre radius, luminosity and cluster concentration. The ratio of half mass over Jacobi radius also correlates with both truncation parameter and PE fraction, showing the effect of Roche lobe filling.
431 - Y.H.M. Hendy , , D. Bisht 2021
We present a detailed photometric and kinematical analysis of poorly studied open cluster IC 1434 using CCD VRI, APASS, and Gaia DR2 database for the first time. BY determining the membership probability of stars, we identified the 238 most probable members with a probability higher than 60% by using proper motion and parallax data as taken from the Gaia DR2 catalog. The mean proper motion of the cluster is obtained as emu_x= - 3.89 +/- 0.19 and emu_y= - 3.34 +/- 0.19 mas/yr in both the directions of right ascension and declination. The radial distribution of member stars provides cluster extent as 7.6 arcmin. We have estimated the interstellar reddening (E(B-V)) as 0.34 mag using the transformation equations from literature. We obtained the values of cluster age and distance are 631 +/- 73 Myr and 3.2 +/- 0.1 Kpc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا