ﻻ يوجد ملخص باللغة العربية
Based on two decades of radial velocity (RV) observations using Keck/HIRES and McDonald/Tull, and more recent observations using the Automated Planet Finder, we found that the nearby star HR 5183 (HD 120066) hosts a 3$M_J$ minimum mass planet with an orbital period of $74^{+43}_{-22}$ years. The orbit is highly eccentric (e$simeq$0.84), shuttling the planet from within the orbit of Jupiter to beyond the orbit of Neptune. Our careful survey design enabled high cadence observations before, during, and after the planets periastron passage, yielding precise orbital parameter constraints. We searched for stellar or planetary companions that could have excited the planets eccentricity, but found no candidates, potentially implying that the perturber was ejected from the system. We did identify a bound stellar companion more than 15,000 au from the primary, but reasoned that it is currently too widely separated to have an appreciable effect on HR 5183 b. Because HR 5183 bs wide orbit takes it more than 30 au (1) from its star, we also explored the potential of complimentary studies with direct imaging or stellar astrometry. We found that a Gaia detection is very likely, and that imaging at 10 $mu$m is a promising avenue. This discovery highlights the value of long-baseline RV surveys for discovering and characterizing long-period, eccentric Jovian planets. This population may offer important insights into the dynamical evolution of planetary systems containing multiple massive planets.
We present radial velocity measurements of two stars observed as part of the Lick Subgiants Planet Search and the Keck N2K survey. Variations in the radial velocities of both stars reveal the presence of Jupiter-mass exoplanets in highly eccentric or
During the next closest approach of the orbiting star S2/S0-2 to the Galactic supermassive black hole (SMBH), it is estimated that RV uncertainties of ~ 10 km/s allow us to detect post-Newtonian effects throughout 2018. To evaluate an achievable unce
We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the discovery is important for theoretical studie
Context: For over 12 yr, we have carried out a precise radial velocity survey of a sample of 373 G and K giant stars using the Hamilton Echelle Spectrograph at Lick Observatory. There are, among others, a number of multiple planetary systems in our s
The Transiting Exoplanet Survey Satellite TESS has begun a new age of exoplanet discoveries around bright host stars. We present the discovery of HD 1397b (TOI-120.01), a giant planet in an 11.54day eccentric orbit around a bright (V=7.9) G-type subg