ﻻ يوجد ملخص باللغة العربية
We present radial velocity measurements of two stars observed as part of the Lick Subgiants Planet Search and the Keck N2K survey. Variations in the radial velocities of both stars reveal the presence of Jupiter-mass exoplanets in highly eccentric orbits. HD 16175 is a G0 subgiant from the Lick Subgiants Planet Search, orbited by a planet having a minimum mass of 4.4 M_Jup, in an eccentric (e = 0.59), 2.71 yr orbit. HD 96167 is a G5 subgiant from the N2K (Next 2000) program at Keck Observatory, orbited by a planet having a minimum mass of 0.68 M_Jup, in an eccentric (e = 0.71), 1.366 yr orbit. Both stars are relatively massive (M_star = 1.3 M_sun) and are very metal rich ([Fe/H] > +0.3). We describe our methods for measuring the stars radial velocity variations and photometric stability.
We report detections of new exoplanets from a radial velocity (RV) survey of metal-rich FGK stars by using three telescopes. By optimizing our RV analysis method to long time-baseline observations, we have succeeded in detecting five new Jovian-plane
Gas giants orbiting interior to the ice line are thought to have been displaced from their formation locations by processes that remain debated. Here we uncover several new metallicity trends, which together may indicate that two competing mechanisms
The relationship between the compositions of giant planets and their host stars is of fundamental interest in understanding planet formation. The solar system giant planets are enhanced above solar composition in metals, both in their visible atmosph
The pileup of planets at periods of roughly one year and beyond is actually a bimodal peak with a wide, sharp gap splitting the peak of the pileup in a major population of large planets. Consisting of nearly 40% of planets with periods past 200 days,
Probing the connection between a stars metallicity and the presence and properties of any associated planets offers an observational link between conditions during the epoch of planet formation and mature planetary systems. We explore this connection