ترغب بنشر مسار تعليمي؟ اضغط هنا

Vortex fiber nulling for exoplanet observations: conceptual design, theoretical performance, and initial scientific yield predictions

109   0   0.0 ( 0 )
 نشر من قبل Garreth Ruane
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Vortex fiber nulling (VFN) is a method that may enable the detection and characterization of exoplanets at small angular separations (0.5-2 $lambda/D$) with ground- and space-based telescopes. Since the field of view is within the inner working angle of most coronagraphs, nulling accesses non-transiting planets that are otherwise too close to their star for spectral characterization by other means, thereby significantly increasing the number of known exoplanets available for direct spectroscopy in the near-infrared. Furthermore, VFN targets planets on closer-in orbits which tend to have more favorable planet-to-star flux ratios in reflected light. Here, we present the theory and applications of VFN, show that the optical performance is approximately equivalent for a variety of implementations and aperture shapes, and discuss the trade-offs between throughput and engineering requirements using numerical simulations. We compare vector and scalar approaches and, finally, show that beam shaping optics may be used to significantly improve the throughput for planet light. Based on theoretical performance, we estimate the number of known planets and theoretical exoEarths accessible with a VFN instrument linked to a high-resolution spectrograph on the future Thirty Meter Telescope.

قيم البحث

اقرأ أيضاً

Vortex fiber nulling is a method for spectroscopically characterizing exoplanets at small angular separations, $lesssimlambda/D$, from their host star. The starlight is suppressed by creating an optical vortex in the system point spread function, whi ch prevents the stellar field from coupling into the fundamental mode of a single-mode optical fiber. Light from the planet, on the other hand, couples into the fiber and is routed to a spectrograph. Using a prototype vortex fiber nuller (VFN) designed for monochromatic light, we demonstrate coupling fractions of $6times10^{-5}$ and $>0.1$ for the star and planet, respectively.
The segmented coronagraph design and analysis (SCDA) study is a coordinated effort, led by Stuart Shaklan (JPL) and supported by NASAs Exoplanet Exploration Program (ExEP), to provide efficient coronagraph design concepts for exoplanet imaging with f uture segmented aperture space telescopes. This document serves as an update on the apodized vortex coronagraph designs devised by the Caltech/JPL SCDA team. Apodized vortex coronagraphs come in two flavors, where the apodization is achieved either by use of 1) a gray-scale semi-transparent pupil mask or 2) a pair of deformable mirrors in series. Each approach has attractive benefits. This document presents a comprehensive review of the former type. Future theoretical investigations will further explore the use of deformable mirrors for apodization.
Vortex Fiber Nulling (VFN) is an interferometric method for suppressing starlight to detect and spectroscopically characterize exoplanets. It relies on a vortex phase mask and single-mode fiber to reject starlight while simultaneously coupling up to 20% of the planet light at separations of $lesssim1lambda/D$, thereby enabling spectroscopic characterization of a large population of RV and transit-detected planets, among others, that are inaccessible to conventional coronagraphs. VFN has been demonstrated in the lab at visible wavelengths and here we present the latest results of these experiments. This includes polychromatic nulls of $5times10^{-4}$ in 10% bandwidth light centered around 790 nm. An upgraded testbed has been designed and is being built in the lab now; we also present a status update on that work here. Finally, we present preliminary K-band (2 $mu$m) fiber nulling results with the infrared mask that will be used on-sky as part of a VFN mode for the Keck Planet Imager and Characterizer Instrument in 2021.
The Keck Planet Imager and Characterizer (KPIC) is an upgrade to the Keck II adaptive optics system that includes an active fiber injection unit (FIU) for efficiently routing light from exoplanets to NIRSPEC, a high-resolution spectrograph. Towards t he end of 2019, we will add a suite of new coronagraph modes as well as a high-order deformable mirror. One of these modes, operating in $K$-band (2.2$mu m$), will be the first vortex fiber nuller to go on sky. Vortex Fiber Nulling (VFN) is a new interferometric method for suppressing starlight in order to spectroscopically characterize exoplanets at angular separations that are inaccessible with conventional coronagraph systems. A monochromatic starlight suppression of $6times10^{-5}$ in 635 nm laser light has already been demonstrated on a VFN testbed in the lab. A polychromatic experiment is now underway and coupling efficiencies of $<5times10^{-4}$ and $sim5%$ have been demonstrated for the star and planet respectively in 10% bandwidth light. Here we describe those experiments, the new KPIC VFN mode, and the expected performance of this mode using realistic parameters determined from on-sky tests done during the KPIC commissioning.
70 - Olivier Guyon 2013
A scheme to optimally design a beam combiner is discussed for any pre-determined fixed geometry nulling interferometer aimed at detection and characterization of exoplanets with multiple telescopes or a single telescope (aperture masking). We show th at considerably higher order nulls can be achieved with 1-D interferometer geometries than possible with 2-D geometries with the same number of apertures. Any 1-D interferometer with N apertures can achieve a 2(N-1)-order null, while the order of the deepest null for a random 2-D aperture geometry interferometer is the order of the N-th term in the Taylor expansion of e^{i(x^2+y^2)} around x=0, y=0 (2nd order null for N=2,3; 4th order null for N=4,5,6). We also show that an optimal beam combiner for nulling interferometry relies only 0 or Pi phase shifts. Examples of nulling interferometer designs are shown to illustrate these findings.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا