ترغب بنشر مسار تعليمي؟ اضغط هنا

Strongly correlated superfluid order parameters from dc Josephson supercurrents

444   0   0.0 ( 0 )
 نشر من قبل Francesco Scazza
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dc Josephson effect provides a powerful phase-sensitive tool for investigating superfluid order parameters. We report on the observation of dc Josephson supercurrents in strongly interacting fermionic superfluids across a tunnelling barrier in the absence of any applied potential difference. For sufficiently strong barriers, we observe a sinusoidal current-phase relation, in agreement with Josephsons seminal prediction. We map out the zero-resistance state and its breakdown as a function of junction parameters, extracting the Josephson critical current behaviour. By comparing our results with an analytic model, we determine the pair condensate fraction throughout the Bardeen-Cooper-Schrieffer - Bose-Einstein Condensation crossover. Our work suggests that coherent Josephson transport may be used to pin down superfluid order parameters in diverse atomic systems, even in the presence of strong correlations.



قيم البحث

اقرأ أيضاً

We investigate the macroscopic quantum tunneling of fermionic superfluids in the two-dimensional BCS-BEC crossover by using an effective tunneling energy which explicitly depends on the condensate fraction and the chemical potential of the system. We compare the mean-field effective tunneling energy with the beyond-mean-field one finding that the mean-field tunneling energy is not reliable in the BEC regime of the crossover. Then we solve the Josephson equations of the population imbalance and the relative phase calculating the frequency of tunneling oscillation both in the linear regime and in the nonlinear one. Our results show that the Josephson frequency is larger in the intermediate regime of the BCS-BEC crossover due to the peculiar behavior of the effective tunneling energy in the crossover.
Atomtronics has the potential for engineering new types of functional devices, such as Josephson junctions (JJs). Previous studies have mainly focused on JJs whose ground states have 0 or $pi $ superconducting phase difference across the junctions, w hile arbitrarily tunable phase JJs may have important applications in superconducting electronics and quantum computation. Here we show that a phase tunable JJ can be implemented in a spin-orbit coupled cold atomic gas with the magnetic tunneling barrier generated by a spin-dependent focused laser beam. We consider the JJ confined in either a linear harmonic trap or a circular ring trap. In the ring trap, the magnetic barrier induces a spontaneous mass current for the ground state of the JJ, demonstrating the magnetoelectric effects of cold atoms.
Among the various numerical techniques to study the physics of strongly correlated quantum many-body systems, the self-energy functional approach (SFA) has become increasingly important. In its previous form, however, SFA is not applicable to Bose-Ei nstein condensation or superfluidity. In this paper we show how to overcome this shortcoming. To this end we identify an appropriate quantity, which we term $D$, that represents the correlation correction of the condensate order parameter, as it does the self-energy for the Greens function. An appropriate functional is derived, which is stationary at the exact physical realizations of $D$ and of the self-energy. Its derivation is based on a functional-integral representation of the grand potential followed by an appropriate sequence of Legendre transformations. The approach is not perturbative and therefore applicable to a wide range of models with local interactions. We show that the variational cluster approach based on the extended self-energy functional is equivalent to the pseudoparticle approach introduced in Phys. Rev. B, 83, 134507 (2011). We present results for the superfluid density in the two-dimensional Bose-Hubbard model, which show a remarkable agreement with those of Quantum-Monte-Carlo calculations.
We study Josephson oscillations of two strongly correlated one-dimensional bosonic clouds separated by a localized barrier. Using a quantum-Langevin approach and the exact Tonks-Girardeau solution in the impenetrable-boson limit, we determine the dyn amical evolution of the particle-number imbalance, displaying an effective damping of the Josephson oscillations which depends on barrier height, interaction strength and temperature. We show that the damping originates from the quantum and thermal fluctuations intrinsically present in the strongly correlated gas. Thanks to the density-phase duality of the model, the same results apply to particle-current oscillations in a one-dimensional ring where a weak barrier couples different angular momentum states.
Superfluidity and superconductivity have been studied widely since the last century in many different contexts ranging from nuclear matter to atomic quantum gases. The rigidity of these systems with respect to external perturbations results in fricti onless motion for superfluids and resistance-free electric current in superconductors. This peculiar behaviour is lost when external perturbations overcome a critical threshold, i.e. above a critical magnetic field or a critical current for superconductors. In superfluids, such as liquid helium or ultracold gases, the corresponding quantities are critical rotation rate and critical velocity, respectively. Enhancing the critical values is of great fundamental and practical value. Here we demonstrate that superfluidity can be achieved for flow above the critical velocity through quantum interference induced resonances. This has far reaching consequences for the fundamental understanding of superfluidity and superconductivity and opens up new application possibilities in quantum metrology, e.g. in rotation sensing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا