ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical Issues in Deep Networks: Approximation, Optimization and Generalization

101   0   0.0 ( 0 )
 نشر من قبل Qianli Liao
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

While deep learning is successful in a number of applications, it is not yet well understood theoretically. A satisfactory theoretical characterization of deep learning however, is beginning to emerge. It covers the following questions: 1) representation power of deep networks 2) optimization of the empirical risk 3) generalization properties of gradient descent techniques --- why the expected error does not suffer, despite the absence of explicit regularization, when the networks are overparametrized? In this review we discuss recent advances in the three areas. In approximation theory both shallow and deep networks have been shown to approximate any continuous functions on a bounded domain at the expense of an exponential number of parameters (exponential in the dimensionality of the function). However, for a subset of compositional functions, deep networks of the convolutional type can have a linear dependence on dimensionality, unlike shallow networks. In optimization we discuss the loss landscape for the exponential loss function and show that stochastic gradient descent will find with high probability the global minima. To address the question of generalization for classification tasks, we use classical uniform convergence results to justify minimizing a surrogate exponential-type loss function under a unit norm constraint on the weight matrix at each layer -- since the interesting variables for classification are the weight directions rather than the weights. Our approach, which is supported by several independent new results, offers a solution to the puzzle about generalization performance of deep overparametrized ReLU networks, uncovering the origin of the underlying hidden complexity control.

قيم البحث

اقرأ أيضاً

Neural networks have achieved remarkable success in many cognitive tasks. However, when they are trained sequentially on multiple tasks without access to old data, their performance on early tasks tend to drop significantly. This problem is often ref erred to as catastrophic forgetting, a key challenge in continual learning of neural networks. The regularization-based approach is one of the primary classes of methods to alleviate catastrophic forgetting. In this paper, we provide a novel viewpoint of regularization-based continual learning by formulating it as a second-order Taylor approximation of the loss function of each task. This viewpoint leads to a unified framework that can be instantiated to derive many existing algorithms such as Elastic Weight Consolidation and Kronecker factored Laplace approximation. Based on this viewpoint, we study the optimization aspects (i.e., convergence) as well as generalization properties (i.e., finite-sample guarantees) of regularization-based continual learning. Our theoretical results indicate the importance of accurate approximation of the Hessian matrix. The experimental results on several benchmarks provide empirical validation of our theoretical findings.
Existing generalization measures that aim to capture a models simplicity based on parameter counts or norms fail to explain generalization in overparameterized deep neural networks. In this paper, we introduce a new, theoretically motivated measure o f a networks simplicity which we call prunability: the smallest emph{fraction} of the networks parameters that can be kept while pruning without adversely affecting its training loss. We show that this measure is highly predictive of a models generalization performance across a large set of convolutional networks trained on CIFAR-10, does not grow with network size unlike existing pruning-based measures, and exhibits high correlation with test set loss even in a particularly challenging double descent setting. Lastly, we show that the success of prunability cannot be explained by its relation to known complexity measures based on models margin, flatness of minima and optimization speed, finding that our new measure is similar to -- but more predictive than -- existing flatness-based measures, and that its predictions exhibit low mutual information with those of other baselines.
We study the dynamics of optimization and the generalization properties of one-hidden layer neural networks with quadratic activation function in the over-parametrized regime where the layer width $m$ is larger than the input dimension $d$. We cons ider a teacher-student scenario where the teacher has the same structure as the student with a hidden layer of smaller width $m^*le m$. We describe how the empirical loss landscape is affected by the number $n$ of data samples and the width $m^*$ of the teacher network. In particular we determine how the probability that there be no spurious minima on the empirical loss depends on $n$, $d$, and $m^*$, thereby establishing conditions under which the neural network can in principle recover the teacher. We also show that under the same conditions gradient descent dynamics on the empirical loss converges and leads to small generalization error, i.e. it enables recovery in practice. Finally we characterize the time-convergence rate of gradient descent in the limit of a large number of samples. These results are confirmed by numerical experiments.
Recent work has focused on combining kernel methods and deep learning to exploit the best of the two approaches. Here, we introduce a new architecture of neural networks in which we replace the top dense layers of standard convolutional architectures with an approximation of a kernel function by relying on the Nystr{o}m approximation. Our approach is easy and highly flexible. It is compatible with any kernel function and it allows exploiting multiple kernels. We show that our architecture has the same performance than standard architecture on datasets like SVHN and CIFAR100. One benefit of the method lies in its limited number of learnable parameters which makes it particularly suited for small training set sizes, e.g. from 5 to 20 samples per class.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا