ﻻ يوجد ملخص باللغة العربية
An increasing current through a superconductor can result in a discontinuous increase in the differential resistance at the critical current. This critical current is typically associated either with breaking of Cooper-pairs (de-pairing) or with a collective motion of vortices (de-pinning). In this work we measure superconducting amorphous indium oxide films at low temperatures and high magnetic fields. Using heat-balance considerations we demonstrate that the current-voltage characteristics are well explained by electron overheating that occurs due to the thermal decoupling of the electrons from the host phonons. As a result the electrons overheat to a significantly higher temperature than that of the lattice. By solving the heat-balance equation we are able to accurately predict the critical currents in a variety of experimental conditions. The heat-balance approach stems directly from energy conservation. As such it is universal and applies to diverse situations from critical currents in superconductors to climate bi-stabilities that can initiate another ice-age. One disadvantage of the universal nature of this approach is that it is insensitive to the microscopic details of the system, which limits our ability to draw conclusions regarding the initial departure from equilibrium.
Generally, studies of the critical current Ic are necessary if superconductors are to be of practical use because Ic sets the current limit below which there is a zero-resistance state. Here, we report a peak in the pressure dependence of the zero-fi
Investigating the anisotropy of superconductors permits an access to fundamental properties. Having succeeded in the fabrication of epitaxial superconducting LaFeAs(O,F) thin films we performed an extensive study of electrical transport properties. I
For any practical superconductor the magnitude of the critical current density, $J_textrm{c}$, is crucially important. It sets the upper limit for current in the conductor. Usually $J_textrm{c}$ falls rapidly with increasing external magnetic field b
A method is proposed for estimating the length scale of currents circulating in superconductors. The estimated circulation radius is used to determine the critical current density on the basis of magnetic measurements. The obtained formulas are appli
We present a perspective on a new critical-current-by-design paradigm to tailor and enhance the current-carrying capacity of applied superconductors. Critical current by design is based on large-scale simulations of vortex matter pinning in high-temp