ترغب بنشر مسار تعليمي؟ اضغط هنا

Autonomous Learning for Face Recognition in the Wild via Ambient Wireless Cues

73   0   0.0 ( 0 )
 نشر من قبل Chris Xiaoxuan Lu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Facial recognition is a key enabling component for emerging Internet of Things (IoT) services such as smart homes or responsive offices. Through the use of deep neural networks, facial recognition has achieved excellent performance. However, this is only possibly when trained with hundreds of images of each user in different viewing and lighting conditions. Clearly, this level of effort in enrolment and labelling is impossible for wide-spread deployment and adoption. Inspired by the fact that most people carry smart wireless devices with them, e.g. smartphones, we propose to use this wireless identifier as a supervisory label. This allows us to curate a dataset of facial images that are unique to a certain domain e.g. a set of people in a particular office. This custom corpus can then be used to finetune existing pre-trained models e.g. FaceNet. However, due to the vagaries of wireless propagation in buildings, the supervisory labels are noisy and weak.We propose a novel technique, AutoTune, which learns and refines the association between a face and wireless identifier over time, by increasing the inter-cluster separation and minimizing the intra-cluster distance. Through extensive experiments with multiple users on two sites, we demonstrate the ability of AutoTune to design an environment-specific, continually evolving facial recognition system with entirely no user effort.



قيم البحث

اقرأ أيضاً

99 - Bi Li , Teng Xi , Gang Zhang 2021
Learning discriminative representation using large-scale face datasets in the wild is crucial for real-world applications, yet it remains challenging. The difficulties lie in many aspects and this work focus on computing resource constraint and long- tailed class distribution. Recently, classification-based representation learning with deep neural networks and well-designed losses have demonstrated good recognition performance. However, the computing and memory cost linearly scales up to the number of identities (classes) in the training set, and the learning process suffers from unbalanced classes. In this work, we propose a dynamic class queue (DCQ) to tackle these two problems. Specifically, for each iteration during training, a subset of classes for recognition are dynamically selected and their class weights are dynamically generated on-the-fly which are stored in a queue. Since only a subset of classes is selected for each iteration, the computing requirement is reduced. By using a single server without model parallel, we empirically verify in large-scale datasets that 10% of classes are sufficient to achieve similar performance as using all classes. Moreover, the class weights are dynamically generated in a few-shot manner and therefore suitable for tail classes with only a few instances. We show clear improvement over a strong baseline in the largest public dataset Megaface Challenge2 (MF2) which has 672K identities and over 88% of them have less than 10 instances. Code is available at https://github.com/bilylee/DCQ
While deep face recognition has benefited significantly from large-scale labeled data, current research is focused on leveraging unlabeled data to further boost performance, reducing the cost of human annotation. Prior work has mostly been in control led settings, where the labeled and unlabeled data sets have no overlapping identities by construction. This is not realistic in large-scale face recognition, where one must contend with such overlaps, the frequency of which increases with the volume of data. Ignoring identity overlap leads to significant labeling noise, as data from the same identity is split into multiple clusters. To address this, we propose a novel identity separation method based on extreme value theory. It is formulated as an out-of-distribution detection algorithm, and greatly reduces the problems caused by overlapping-identity label noise. Considering cluster assignments as pseudo-labels, we must also overcome the labeling noise from clustering errors. We propose a modulation of the cosine loss, where the modulation weights correspond to an estimate of clustering uncertainty. Extensive experiments on both controlled and real settings demonstrate our methods consistent improvements over supervised baselines, e.g., 11.6% improvement on IJB-A verification.
179 - Chaofeng Chen , Wei Liu , Xiao Tan 2018
Face sketch synthesis has made great progress in the past few years. Recent methods based on deep neural networks are able to generate high quality sketches from face photos. However, due to the lack of training data (photo-sketch pairs), none of suc h deep learning based methods can be applied successfully to face photos in the wild. In this paper, we propose a semi-supervised deep learning architecture which extends face sketch synthesis to handle face photos in the wild by exploiting additional face photos in training. Instead of supervising the network with ground truth sketches, we first perform patch matching in feature space between the input photo and photos in a small reference set of photo-sketch pairs. We then compose a pseudo sketch feature representation using the corresponding sketch feature patches to supervise our network. With the proposed approach, we can train our networks using a small reference set of photo-sketch pairs together with a large face photo dataset without ground truth sketches. Experiments show that our method achieve state-of-the-art performance both on public benchmarks and face photos in the wild. Codes are available at https://github.com/chaofengc/Face-Sketch-Wild.
In recent years, due to the emergence of deep learning, face recognition has achieved exceptional success. However, many of these deep face recognition models perform relatively poorly in handling profile faces compared to frontal faces. The major re ason for this poor performance is that it is inherently difficult to learn large pose invariant deep representations that are useful for profile face recognition. In this paper, we hypothesize that the profile face domain possesses a gradual connection with the frontal face domain in the deep feature space. We look to exploit this connection by projecting the profile faces and frontal faces into a common latent space and perform verification or retrieval in the latent domain. We leverage a coupled generative adversarial network (cpGAN) structure to find the hidden relationship between the profile and frontal images in a latent common embedding subspace. Specifically, the cpGAN framework consists of two GAN-based sub-networks, one dedicated to the frontal domain and the other dedicated to the profile domain. Each sub-network tends to find a projection that maximizes the pair-wise correlation between two feature domains in a common embedding feature subspace. The efficacy of our approach compared with the state-of-the-art is demonstrated using the CFP, CMU MultiPIE, IJB-A, and IJB-C datasets.
This paper presents a neural network based method Multi-Task Affect Net(MTANet) submitted to the Affective Behavior Analysis in-the-Wild Challenge in FG2020. This method is a multi-task network and based on SE-ResNet modules. By utilizing multi-task learning, this network can estimate and recognize three quantified affective models: valence and arousal, action units, and seven basic emotions simultaneously. MTANet achieve Concordance Correlation Coefficient(CCC) rates of 0.28 and 0.34 for valence and arousal, F1-score of 0.427 and 0.32 for AUs detection and categorical emotion classification.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا