ﻻ يوجد ملخص باللغة العربية
The substantial number of binary central stars of planetary nebulae (CSPNe) now known ($sim$50) has revealed a strong connection between binarity and some morphological features including jets and low-ionisation structures. However, some features and asymmetries might be too complex or subtle to ascribe to binary interactions alone. A tertiary component, i.e. a triple nucleus, could be the missing ingredient required to produce these features. The only proven triple, NGC 246, is insufficient to investigate the shaping role of triple nuclei, but one straight-forward way to identify more triples is to search for binaries in nuclei with known visual companions. Here we report on the SALT HRS discovery of a 4.81 d orbital period in the CSPN of Sp 3 which has a visual companion 0.31 away. The spectroscopic distance of the visual companion agrees with distance estimates to the nebula, the GAIA DR2 parallax of the central star, and the gravity distance of the central star. This supports a physical association between the visual companion and the 4.81 d binary, making the nucleus of Sp 3 a likely triple. We determine $T_mathrm{eff}=68^{+12}_{-6}$ kK, $log g=4.6pm0.2$ cm s$^{-2}$ and $v_mathrm{rot}=80pm20$ km s$^{-1}$ for the primary from NLTE model atmosphere analysis. The peculiar nebula presents an apparent bipolar morphology, jets and an unexpected `extreme oxygen abundance discrepancy factor (adf) of 24.6$^{+4.1}_{-3.4}$. The adf is inconsistent with the purported trend for longer orbital period post-CE PNe to exhibit normal adfs, further highlighting selection effects in post-CE PNe. The Type-I nebular abundances of Sp 3, whose origin is often tied to more massive progenitors, are incongruous with the likely Galactic Thick Disk membership of Sp 3, possibly suggesting that rotation and binarity may play an important role in the AGB nucleosynthesis of PNe. (abridged)
Classical barium stars are binary systems which consist of a late-type giant enriched in carbon and slow neutron capture (s-process) elements and an evolved white dwarf (WD) that is invisible at optical wavelengths. The youngest observed barium stars
It has recently been noted that there seems to be a strong correlation between planetary nebulae with close binary central stars, and highly enhanced recombination line abundances. We present new deep spectra of seven objects known to have close bina
EGB 6 is a faint, large, ancient planetary nebula (PN). Its central star, a hot DAOZ white dwarf (WD), is a prototype of a rare class of PN nuclei associated with dense, compact emission-line knots. The central star also shows excess fluxes in both t
Recent studies have indicated that triple star systems may play a role in the formation of an appreciable number of planetary nebulae, however only one triple central star is known to date (and that system is likely too wide to have had much influenc
Recent work (Corradi et al. 2015, Jones et al. 2016) has shown that the phenomenon of extreme abundance discrepancies, where recombination line abundances exceed collisionally excited line abundances by factors of 10 or more, seem to be strongly asso