ترغب بنشر مسار تعليمي؟ اضغط هنا

Confirmation of the link between central star binarity and extreme abundance discrepancy factors in planetary nebulae

335   0   0.0 ( 0 )
 نشر من قبل Roger Wesson
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has recently been noted that there seems to be a strong correlation between planetary nebulae with close binary central stars, and highly enhanced recombination line abundances. We present new deep spectra of seven objects known to have close binary central stars, and find that the heavy element abundances derived from recombination lines exceed those from collisionally excited lines by factors of 5-95, placing several of these nebulae among the most extreme known abundance discrepancies. This study nearly doubles the number of nebulae known to have a binary central star and an extreme abundance discrepancy. A statistical analysis of all nebulae with measured recombination line abundances reveals no link between central star surface chemistry and nebular abundance discrepancy, but a clear link between binarity and the abundance discrepancy, as well as an anticorrelation between abundance discrepancies and nebular electron densities: all nebulae with a binary central star with a period of less than 1.15 days have an abundance discrepancy factor exceeding 10, and an electron density less than $sim$1000 cm$^{-3}$; those with longer period binaries have abundance discrepancy factors less than 10 and much higher electron densities. We find that [O~{sc ii}] density diagnostic lines can be strongly enhanced by recombination excitation, while [S~{sc ii}] lines are not. These findings give weight to the idea that extreme abundance discrepancies are caused by a nova-like eruption from the central star system, occurring soon after the common-envelope phase, which ejects material depleted in hydrogen, and enhanced in CNONe but not in third-row elements.



قيم البحث

اقرأ أيضاً

Recent work (Corradi et al. 2015, Jones et al. 2016) has shown that the phenomenon of extreme abundance discrepancies, where recombination line abundances exceed collisionally excited line abundances by factors of 10 or more, seem to be strongly asso ciated with planetary nebulae with close binary central stars. To further investigate, we have obtained spectra of a sample of nebulae with known close binary central stars, using FORS2 on the VLT, and we have discovered several new extreme abundance discrepancy objects. We did not find any non-extreme discrepancies, suggesting that a very high fraction of nebulae with close binary central stars also have an extreme abundance discrepancy.
The discrepancy between abundances computed using optical recombination lines (ORLs) and collisionally excited lines (CELs) is a major, unresolved problem with significant implications for the determination of chemical abundances throughout the Unive rse. In planetary nebulae (PNe), the most common explanation for the discrepancy is that two different gas phases coexist: a hot component with standard metallicity, and a much colder plasma enhanced in heavy elements. This dual nature is not predicted by mass loss theories, and direct observational support for it is still weak. In this work, we present our recent findings that demonstrate that the largest abundance discrepancies are associated with close binary central stars. OSIRIS-GTC tunable filter imaging of the faint O II ORLs and MUSE-VLT deep 2D spectrophotometry confirm that O II ORL emission is more centrally concentrated than that of [O III] CELs and, therefore, that the abundance discrepancy may be closely linked to binary evolution.
162 - Brent Miszalski 2015
Over a hundred planetary nebulae (PNe) are known to have H-deficient central stars that mimic the spectroscopic appearance of massive Wolf-Rayet stars. The formation of these low-mass Wolf-Rayet stars, denoted [WR] stars, remains poorly understood. W hile several binary formation scenarios have been proposed, there are too few [WR] binaries known to determine their feasibility. Out of nearly 50 post-common-envelope (post-CE) binary central stars known, only PN G222.8$-$04.2 ([WC7], $P=1.26$ d) and NGC 5189 ([WO1], $P=4.05$ d) have a [WR] component. The available data suggests that post-CE central stars with [WR] components lack main sequence companions and have a wider orbital separation than typical post-CE binaries. There is also some indirect evidence for wide binaries that could potentially lead to the discovery of more [WR] binaries.
70 - J. Garcia-Rojas 2019
In this paper, we will focus on the advances made in the last few years regarding the abundance discrepancy problem in ionized nebulae. We will show the importance of collecting deep, high-quality data of H II regions and planetary nebulae taken with the most advanced instruments attached to the largest ground-based telescopes. We will also present a sketch of some new scenarios proposed to explain the abundance discrepancy.
137 - J. Garcia-Rojas , 2013
(Abridged) We present the abundance analysis of 12 PNe ionized by [WC]-type stars and wels obtained from high-resolution spectrophotometric data. Our main aims are to determine the chemical composition of the PNe and to study the behaviour of the abu ndance discrepancy problem (ADF) in this type of planetary nebulae. The detection of a large number of optical recombination lines (ORLs) and collisionally excited lines (CELs) from different ions were presented previously. Most of the ORLs were reported for the first time in these PNe. Ionic abundances were derived from the available CELs and ORLs, using previously determined physical conditions. Based on these two sets of ionic abundances, we derived the total chemical abundances in the nebulae using suitable ICFs (when available). In spite of the [WC] nature of the central stars, moderate ADF(O^++), in the range from 1.2 to 4, were found for all the objects. We found that when the quality of the spectra is high enough the ORLs O^++/H^+ abundance ratios obtained from different multiplets excited mainly by recombination are very similar. Possible dependence of ADFs with some nebular characteristics were analysed, finding no correlation. Abundances derived from CELs were corrected by determining the t^2 parameter. O abundances for PNe, derived from ORLs, are in general larger than the solar abundance. We derived the C/O ratio from ORLs and N/O and alpha-element/O ratios from CELs and found that these PNe are, in average, N-and C-richer than the average of large PN samples. About half of our sample is C-rich (C/O>1). The alpha-elements grow in lockstep with O abundance. Comparing the N/O and C /O ratios with those derived from stellar evolution models, we estimate that about half of our PNe have progenitors with initial masses > 4 M_sun. No correlation was found between the stellar [WC]-type and the nebular abundances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا