ترغب بنشر مسار تعليمي؟ اضغط هنا

DC3 -- A Diagnostic Case Challenge Collection for Clinical Decision Support

80   0   0.0 ( 0 )
 نشر من قبل Carsten Eickhoff
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In clinical care, obtaining a correct diagnosis is the first step towards successful treatment and, ultimately, recovery. Depending on the complexity of the case, the diagnostic phase can be lengthy and ridden with errors and delays. Such errors have a high likelihood to cause patients severe harm or even lead to their death and are estimated to cost the U.S. healthcare system several hundred billion dollars each year. To avoid diagnostic errors, physicians increasingly rely on diagnostic decision support systems drawing from heuristics, historic cases, textbooks, clinical guidelines and scholarly biomedical literature. The evaluation of such systems, however, is often conducted in an ad-hoc fashion, using non-transparent methodology, and proprietary data. This paper presents DC3, a collection of 31 extremely difficult diagnostic case challenges, manually compiled and solved by clinical experts. For each case, we present a number of temporally ordered physician-generated observations alongside the eventually confirmed true diagnosis. We additionally provide inferred dense relevance judgments for these cases among the PubMed collection of 27 million scholarly biomedical articles.



قيم البحث

اقرأ أيضاً

In this paper, we investigate how semantic relations between concepts extracted from medical documents can be employed to improve the retrieval of medical literature. Semantic relations explicitly represent relatedness between concepts and carry high informative power that can be leveraged to improve the effectiveness of retrieval functionalities of clinical decision support systems. We present preliminary results and show how relations are able to provide a sizable increase of the precision for several topics, albeit having no impact on others. We then discuss some future directions to minimize the impact of negative results while maximizing the impact of good results.
Owe to the recent advancements in Artificial Intelligence especially deep learning, many data-driven decision support systems have been implemented to facilitate medical doctors in delivering personalized care. We focus on the deep reinforcement lear ning (DRL) models in this paper. DRL models have demonstrated human-level or even superior performance in the tasks of computer vision and game playings, such as Go and Atari game. However, the adoption of deep reinforcement learning techniques in clinical decision optimization is still rare. We present the first survey that summarizes reinforcement learning algorithms with Deep Neural Networks (DNN) on clinical decision support. We also discuss some case studies, where different DRL algorithms were applied to address various clinical challenges. We further compare and contrast the advantages and limitations of various DRL algorithms and present a preliminary guide on how to choose the appropriate DRL algorithm for particular clinical applications.
The pervasive application of algorithmic decision-making is raising concerns on the risk of unintended bias in AI systems deployed in critical settings such as healthcare. The detection and mitigation of biased models is a very delicate task which sh ould be tackled with care and involving domain experts in the loop. In this paper we introduce FairLens, a methodology for discovering and explaining biases. We show how our tool can be used to audit a fictional commercial black-box model acting as a clinical decision support system. In this scenario, the healthcare facility experts can use FairLens on their own historical data to discover the models biases before incorporating it into the clinical decision flow. FairLens first stratifies the available patient data according to attributes such as age, ethnicity, gender and insurance; it then assesses the model performance on such subgroups of patients identifying those in need of expert evaluation. Finally, building on recent state-of-the-art XAI (eXplainable Artificial Intelligence) techniques, FairLens explains which elements in patients clinical history drive the model error in the selected subgroup. Therefore, FairLens allows experts to investigate whether to trust the model and to spotlight group-specific biases that might constitute potential fairness issues.
Clinical decision support tools (DST) promise improved healthcare outcomes by offering data-driven insights. While effective in lab settings, almost all DSTs have failed in practice. Empirical research diagnosed poor contextual fit as the cause. This paper describes the design and field evaluation of a radically new form of DST. It automatically generates slides for clinicians decision meetings with subtly embedded machine prognostics. This design took inspiration from the notion of Unremarkable Computing, that by augmenting the users routines technology/AI can have significant importance for the users yet remain unobtrusive. Our field evaluation suggests clinicians are more likely to encounter and embrace such a DST. Drawing on their responses, we discuss the importance and intricacies of finding the right level of unremarkableness in DST design, and share lessons learned in prototyping critical AI systems as a situated experience.
The COVID-19 crisis has brought about new clinical questions, new workflows, and accelerated distributed healthcare needs. While artificial intelligence (AI)-based clinical decision support seemed to have matured, the application of AI-based tools fo r COVID-19 has been limited to date. In this perspective piece, we identify opportunities and requirements for AI-based clinical decision support systems and highlight challenges that impact AI readiness for rapidly emergent healthcare challenges.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا