ﻻ يوجد ملخص باللغة العربية
The band inversion in topological phase matters bring exotic physical properties such as the emergence of a topologically protected surface states. They strongly influence the surface electronic structures of the investigated materials and could serve as a good platform to gain insight into the catalytic mechanism of surface reactions. Here we synthesized high-quality bulk single crystals of the topological semimetal Co$_3$Sn$_2$S$_2$. We found that at room temperature, Co$_3$Sn$_2$S$_2$ naturally hosts the band structure of a topological semimetal. This guarantees the existence of robust surface states from the Co atoms. Bulk single crystal of Co$_3$Sn$_2$S$_2$ exposes their Kagome lattice that constructed by Co atoms and have high electrical conductivity. They serves as catalytic centers for oxygen evolution process (OER), making bonding and electron transfer more efficient due to the partially filled $e_g$ orbital. The bulk single crystal exhibits outstanding OER catalytic performance, although the surface area is much smaller than that of Co-based nanostructured catalysts. Our findings emphasize the importance of tailoring topological non-trivial surface states for the rational design of high-activity electrocatalysts.
Very recently, the half-metallic compound Co$_3$Sn$_2$S$_2$ was predicted to be a magnetic WSM with Weyl points only 60 meV above the Fermi level ($E_F$). Owing to the low charge carrier density and large Berry curvature induced, Co$_3$Sn$_2$S$_2$ po
Weyl semimetals with time reversal symmetry breaking are expected to show various fascinating physical behaviors, such as intrinsic giant anomalous Hall effect, chiral anomaly effect in the bulks, and Fermi arcs on the surfaces. Here we report a scan
We study the anomalous Hall Effect (AHE) of single-crystalline Co$_3$Sn$_{2-x}$In$_x$S$_2$ over a large range of indium concentration x from 0 to 1. Their magnetization reduces progressively with increasing x while their ground state evolves from a f
The search for novel topological phases of matter in quantum magnets has emerged as a frontier of condensed matter physics. Here we use state-of-the-art angle-resolved photoemission spectroscopy (ARPES) to investigate single crystals of Co$_3$Sn$_2$S
Recent experimental realizations of the topological semimetal states in several monolayer systems are very attractive because of their exotic quantum phenomena and technological applications. Based on first-principles density-functional theory calcul