ترغب بنشر مسار تعليمي؟ اضغط هنا

The many Shapley values for model explanation

91   0   0.0 ( 0 )
 نشر من قبل Mukund Sundararajan
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Shapley value has become a popular method to attribute the prediction of a machine-learning model on an input to its base features. The use of the Shapley value is justified by citing [16] showing that it is the emph{unique} method that satisfies certain good properties (emph{axioms}). There are, however, a multiplicity of ways in which the Shapley value is operationalized in the attribution problem. These differ in how they reference the model, the training data, and the explanation context. These give very different results, rendering the uniqueness result meaningless. Furthermore, we find that previously proposed approaches can produce counterintuitive attributions in theory and in practice---for instance, they can assign non-zero attributions to features that are not even referenced by the model. In this paper, we use the axiomatic approach to study the differences between some of the many operationalizations of the Shapley value for attribution, and propose a technique called Baseline Shapley (BShap) that is backed by a proper uniqueness result. We also contrast BShap with Integrated Gradients, another extension of Shapley value to the continuous setting.

قيم البحث

اقرأ أيضاً

Shapley values have become one of the most popular feature attribution explanation methods. However, most prior work has focused on post-hoc Shapley explanations, which can be computationally demanding due to its exponential time complexity and precl ude model regularization based on Shapley explanations during training. Thus, we propose to incorporate Shapley values themselves as latent representations in deep models thereby making Shapley explanations first-class citizens in the modeling paradigm. This intrinsic explanation approach enables layer-wise explanations, explanation regularization of the model during training, and fast explanation computation at test time. We define the Shapley transform that transforms the input into a Shapley representation given a specific function. We operationalize the Shapley transform as a neural network module and construct both shallow and deep networks, called ShapNets, by composing Shapley modules. We prove that our Shallow ShapNets compute the exact Shapley values and our Deep ShapNets maintain the missingness and accuracy properties of Shapley values. We demonstrate on synthetic and real-world datasets that our ShapNets enable layer-wise Shapley explanations, novel Shapley regularizations during training, and fast computation while maintaining reasonable performance. Code is available at https://github.com/inouye-lab/ShapleyExplanationNetworks.
Game-theoretic formulations of feature importance have become popular as a way to explain machine learning models. These methods define a cooperative game between the features of a model and distribute influence among these input elements using some form of the games unique Shapley values. Justification for these methods rests on two pillars: their desirable mathematical properties, and their applicability to specific motivations for explanations. We show that mathematical problems arise when Shapley values are used for feature importance and that the solutions to mitigate these necessarily induce further complexity, such as the need for causal reasoning. We also draw on additional literature to argue that Shapley values do not provide explanations which suit human-centric goals of explainability.
Explainability has been a goal for Artificial Intelligence (AI) systems since their conception, with the need for explainability growing as more complex AI models are increasingly used in critical, high-stakes settings such as healthcare. Explanation s have often added to an AI system in a non-principled, post-hoc manner. With greater adoption of these systems and emphasis on user-centric explainability, there is a need for a structured representation that treats explainability as a primary consideration, mapping end user needs to specific explanation types and the systems AI capabilities. We design an explanation ontology to model both the role of explanations, accounting for the system and user attributes in the process, and the range of different literature-derived explanation types. We indicate how the ontology can support user requirements for explanations in the domain of healthcare. We evaluate our ontology with a set of competency questions geared towards a system designer who might use our ontology to decide which explanation types to include, given a combination of users needs and a systems capabilities, both in system design settings and in real-time operations. Through the use of this ontology, system designers will be able to make informed choices on which explanations AI systems can and should provide.
Centralized Training with Decentralized Execution (CTDE) has been a popular paradigm in cooperative Multi-Agent Reinforcement Learning (MARL) settings and is widely used in many real applications. One of the major challenges in the training process i s credit assignment, which aims to deduce the contributions of each agent according to the global rewards. Existing credit assignment methods focus on either decomposing the joint value function into individual value functions or measuring the impact of local observations and actions on the global value function. These approaches lack a thorough consideration of the complicated interactions among multiple agents, leading to an unsuitable assignment of credit and subsequently mediocre results on MARL. We propose Shapley Counterfactual Credit Assignment, a novel method for explicit credit assignment which accounts for the coalition of agents. Specifically, Shapley Value and its desired properties are leveraged in deep MARL to credit any combinations of agents, which grants us the capability to estimate the individual credit for each agent. Despite this capability, the main technical difficulty lies in the computational complexity of Shapley Value who grows factorially as the number of agents. We instead utilize an approximation method via Monte Carlo sampling, which reduces the sample complexity while maintaining its effectiveness. We evaluate our method on StarCraft II benchmarks across different scenarios. Our method outperforms existing cooperative MARL algorithms significantly and achieves the state-of-the-art, with especially large margins on tasks with more severe difficulties.
An increasing number of machine learning models have been deployed in domains with high stakes such as finance and healthcare. Despite their superior performances, many models are black boxes in nature which are hard to explain. There are growing eff orts for researchers to develop methods to interpret these black-box models. Post hoc explanations based on perturbations, such as LIME, are widely used approaches to interpret a machine learning model after it has been built. This class of methods has been shown to exhibit large instability, posing serious challenges to the effectiveness of the method itself and harming user trust. In this paper, we propose S-LIME, which utilizes a hypothesis testing framework based on central limit theorem for determining the number of perturbation points needed to guarantee stability of the resulting explanation. Experiments on both simulated and real world data sets are provided to demonstrate the effectiveness of our method.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا