ﻻ يوجد ملخص باللغة العربية
Majorana zero modes (MZMs)--bearing potential applications for topological quantum computing--are verified in quasi-one-dimensional (1D) Fermion systems, including semiconductor nanowires, magnetic atomic chains, planar Josephson junctions. However, the existence of multi-bands in these systems makes the MZMs fragile to the influence of disorder. Moreover, in practical perspective, the proximity induced superconductivity may be difficult and restricted for 1D systems. Here, we propose a flexible route to realize MZMs through 1D topological kink states by engineering a 2D electron gas with antidot lattices, in which both the aforementioned issues can be avoided owing to the robustness of kink states and the intrinsically attainable superconductivity in high-dimensional systems. The MZMs are verified to be quite robust against disorders and the bending of kink states, and can be conveniently tuned by varying the Rashba spin-orbit coupling strength. Our proposal provides an experimental feasible platform for MZMs with systematic manipulability and assembleability based on the present techniques in 2D electron gas system.
Contrary to the widespread belief that Majorana zero-energy modes, existing as bound edge states in 2D topological insulator (TI)-superconductor (SC) hybrid structures, are unaffected by non-magnetic static disorder by virtue of Andersons theorem, we
At low energy, electrons in doped graphene sheets behave like massless Dirac fermions with a Fermi velocity which does not depend on carrier density. Here we show that modulating a two-dimensional electron gas with a long-wavelength periodic potentia
The topological properties in topological superconductors are usually characterized by the bulk Chern numbers, edge-state spectra, and Majorana zero modes. Whether they are equivalent or inequivalent is not well understood. Here, we investigate this
Among the major approaches that are being pursued for realizing quantum bits, the Majorana-based platform has been the most recent to be launched. It attempts to realize qubits which store quantum information in a topologically-protected manner. The
A two-dimensional second-order topological superconductor exhibits a finite gap in both bulk and edges, with the nontrivial topology manifesting itself through Majorana zero modes localized at the corners, i.e., Majorana corner states. We investigate