ﻻ يوجد ملخص باللغة العربية
A two-dimensional second-order topological superconductor exhibits a finite gap in both bulk and edges, with the nontrivial topology manifesting itself through Majorana zero modes localized at the corners, i.e., Majorana corner states. We investigate a time-reversal-invariant topological superconductor in two dimension and demonstrate that an in-plane magnetic field could transform it into a second-order topological superconductor. A detailed analysis reveals that the magnetic field gives rise to mass terms which take distinct values among the edges, and Majorana corner states naturally emerge at the intersection of two adjacent edges with opposite masses. With the rotation of the magnetic field, Majorana corner states localized around the boundary may hop from one corner to a neighboring one and eventually make a full circle around the system when the field rotates by $2pi$. In the end we briefly discuss physical realizations of this system.
Conventional $n$-dimensional topological superconductors (TSCs) have protected gapless $(n - 1)$-dimensional boundary states. In contrast to this, second-order TSCs are characterized by topologically protected gapless $(n - 2)$-dimensional states wit
Two-dimensional second-order topological superconductors (SOTSCs) have gapped bulk and edge states, with zero-energy Majorana bound states localized at corners. Motivated by recent advances in Majorana nanowire experiments, we propose to realize a tu
The concept of topological phases has been generalized to higher-order topological insulators and superconductors with novel boundary states on corners or hinges. Meanwhile, recent experimental advances in controlling dissipation (such as gain and lo
We study the effects of periodic driving on a variant of the Bernevig-Hughes-Zhang (BHZ) model defined on a square lattice. In the absence of driving, the model has both topological and nontopological phases depending on the different parameter value
Recently, higher-order topological phases that do not obey the usual bulk-edge correspondence principle have been introduced in electronic insulators and brought into classical systems, featuring with in-gap corner/hinge states. So far, second-order