ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin Of Tidal Structures In Modified Gravity

205   0   0.0 ( 0 )
 نشر من قبل Michal B\\'ilek
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The missing mass problem has not been solved decisively yet. Observations show that if gravity is to be modified, then the MOND theory is its excellent approximation on galactic scales. MOND suggests an adjustments of the laws of physics in the limit of low accelerations. Comparative simulations of interacting galaxies in MOND and Newtonian gravity with dark matter revealed two principal differences: 1) galaxies can have close flybys without ending in mergers in MOND because of weaker dynamical friction, and 2) tidal dwarf galaxies form very easily in MOND. When this is combined with the fact that many interacting galaxies are observed at high redshift, we obtain a new perspective on tidal features: they are often formed by non-merging encounters and tidal disruptions of tidal dwarf galaxies. Here we present the results from our self-consistent MOND $N$-body simulation of a close flyby of two galaxies similar to the Milky Way. It turns out that most types of the structures that are traditionally assigned to galaxy mergers can be formed by non-merging encounters, including tidal arms, bridges, streams, shells, disk warps, thick disks, and most probably also disks of satellites. The success of MOND in explaining the dynamics of galaxies hints us that this way of formation of tidal structures should be considered seriously.

قيم البحث

اقرأ أيضاً

One of the scenarios for the formation of grand-design spiral arms in disky galaxies involves their interactions with a satellite or another galaxy. Here we consider another possibility, where the perturbation is instead due to the potential of a gal axy cluster. Using $N$-body simulations we investigate the formation and evolution of spiral arms in a Milky Way-like galaxy orbiting a Virgo-like cluster. The galaxy is placed on a few orbits of different size but similar eccentricity and its evolution is followed for 10 Gyr. The tidally induced, two-armed, approximately logarithmic spiral structure forms on each of them during the pericenter passages. The spiral arms dissipate and wind up with time, to be triggered again at the next pericenter passage. We confirm this transient and recurrent nature of the arms by analyzing the time evolution of the pitch angle and the arm strength. We find that the strongest arms are formed on the tightest orbit, however they wind up rather quickly and are disturbed by another pericenter passage. The arms on the most extended orbit, which we analyze in more detail, wind up slowly and survive for the longest time. Measurements of the pattern speed of the arms indicate that they are kinematic density waves. We attempt a comparison with observations by selecting grand-design spiral galaxies in the Virgo cluster. Among those, we find nine examples bearing no signs of recent interactions or the presence of companions. For three of them we present close structural analogues among our simulated spiral galaxies.
In beyond-Horndeski theories of gravity, the Vainshtein screening mechanism might only be partially effective inside stellar objects. This results in a modification of the pressure balance equation inside stars, often characterized by a single parame ter ($Upsilon$) in isotropic systems. We show how to constrain such theories of modified gravity, using tidal effects. We study such effects in cataclysmic variable star binaries and numerically obtain limits on the critical masses of the donor stars, below which they are tidally disrupted, by modeling them in beyond-Horndeski theories. This is contrasted with values of the donor masses, obtained using existing observational data, by a Monte Carlo error progression method. A best fit scenario of the two yields a parametric constraint in the theories that we consider, within the approximations used. Here, we obtain the allowed range $ 0 le Upsilon le 0.47 $.
The phenomenology of modified Newtonian dynamics (MOND) on galaxy scales may point to more fundamental theories of either modified gravity (MG) or modified inertia (MI). In this paper, we test the applicability of the global deep-MOND parameter $Q$ w hich is predicted to vary at the $10%$ level between MG and MI theories. Using mock-observed analytical models of disk galaxies, we investigate several observational uncertainties, establish a set of quality requirements for actual galaxies, and derive systematic corrections in the determination of $Q$. Implementing our quality requirements to the SPARC database yields $15$ galaxies, which are close enough to the deep-MOND regime as well as having rotation curves that are sufficiently extended and sampled. For these galaxies, the average and median values of $Q$ seem to favor MG theories, albeit both MG and MI predictions are in agreement with the data within $1.5sigma$. Improved precision in the determination of $Q$ can be obtained by measuring extended and finely-sampled rotation curves for a significant sample of extremely low-surface-brightness galaxies.
Gravitational theories differing from General Relativity may explain the accelerated expansion of the Universe without a cosmological constant. However, to pass local gravitational tests, a screening mechanism is needed to suppress, on small scales, the fifth force driving the cosmological acceleration. We consider the simplest of these theories, i.e. a scalar-tensor theory with first-order derivative self-interactions, and study isolated (static and spherically symmetric) non-relativistic and relativistic stars. We produce screened solutions and use them as initial data for non-linear numerical evolutions in spherical symmetry. We find that these solutions are stable under large initial perturbations, as long as they do not cause gravitational collapse. When gravitational collapse is triggered, the characteristic speeds of the scalar evolution equation diverge, even before apparent black-hole or sound horizons form. This casts doubts on whether the dynamical evolution of screened stars may be predicted in these effective field theories.
Using a perturbative approach we solve stellar structure equations for low-density (solar-type) stars whose interior is described with a polytropic equation of state in scenarios involving a subset of modified gravity theories. Rather than focusing o n particular theories, we consider a model-independent approach in which deviations from General Relativity are effectively described by a single parameter $xi$. We find that for length scales below those set by stellar General Relativistic radii the modifications introduced by modified gravity can affect the computed values of masses and radii. As a consequence, the stellar luminosity is also affected. We discuss possible further implications for higher density stars and observability of the effects before described.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا