ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards High-Resolution Salient Object Detection

156   0   0.0 ( 0 )
 نشر من قبل Pingping Zhang Dr
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep neural network based methods have made a significant breakthrough in salient object detection. However, they are typically limited to input images with low resolutions ($400times400$ pixels or less). Little effort has been made to train deep neural networks to directly handle salient object detection in very high-resolution images. This paper pushes forward high-resolution saliency detection, and contributes a new dataset, named High-Resolution Salient Object Detection (HRSOD). To our best knowledge, HRSOD is the first high-resolution saliency detection dataset to date. As another contribution, we also propose a novel approach, which incorporates both global semantic information and local high-resolution details, to address this challenging task. More specifically, our approach consists of a Global Semantic Network (GSN), a Local Refinement Network (LRN) and a Global-Local Fusion Network (GLFN). GSN extracts the global semantic information based on down-sampled entire image. Guided by the results of GSN, LRN focuses on some local regions and progressively produces high-resolution predictions. GLFN is further proposed to enforce spatial consistency and boost performance. Experiments illustrate that our method outperforms existing state-of-the-art methods on high-resolution saliency datasets by a large margin, and achieves comparable or even better performance than them on widely-used saliency benchmarks. The HRSOD dataset is available at https://github.com/yi94code/HRSOD.



قيم البحث

اقرأ أيضاً

98 - Lv Tang , Bo Li , Shouhong Ding 2021
Aiming at discovering and locating most distinctive objects from visual scenes, salient object detection (SOD) plays an essential role in various computer vision systems. Coming to the era of high resolution, SOD methods are facing new challenges. Th e major limitation of previous methods is that they try to identify the salient regions and estimate the accurate objects boundaries simultaneously with a single regression task at low-resolution. This practice ignores the inherent difference between the two difficult problems, resulting in poor detection quality. In this paper, we propose a novel deep learning framework for high-resolution SOD task, which disentangles the task into a low-resolution saliency classification network (LRSCN) and a high-resolution refinement network (HRRN). As a pixel-wise classification task, LRSCN is designed to capture sufficient semantics at low-resolution to identify the definite salient, background and uncertain image regions. HRRN is a regression task, which aims at accurately refining the saliency value of pixels in the uncertain region to preserve a clear object boundary at high-resolution with limited GPU memory. It is worth noting that by introducing uncertainty into the training process, our HRRN can well address the high-resolution refinement task without using any high-resolution training data. Extensive experiments on high-resolution saliency datasets as well as some widely used saliency benchmarks show that the proposed method achieves superior performance compared to the state-of-the-art methods.
106 - Yandong Li , Yu Cheng , Zhe Gan 2020
We propose a new task towards more practical application for image generation - high-quality image synthesis from salient object layout. This new setting allows users to provide the layout of salient objects only (i.e., foreground bounding boxes and categories), and lets the model complete the drawing with an invented background and a matching foreground. Two main challenges spring from this new task: (i) how to generate fine-grained details and realistic textures without segmentation map input; and (ii) how to create a background and weave it seamlessly into standalone objects. To tackle this, we propose Background Hallucination Generative Adversarial Network (BachGAN), which first selects a set of segmentation maps from a large candidate pool via a background retrieval module, then encodes these candidate layouts via a background fusion module to hallucinate a suitable background for the given objects. By generating the hallucinated background representation dynamically, our model can synthesize high-resolution images with both photo-realistic foreground and integral background. Experiments on Cityscapes and ADE20K datasets demonstrate the advantage of BachGAN over existing methods, measured on both visual fidelity of generated images and visual alignment between output images and input layouts.
The transformer networks are particularly good at modeling long-range dependencies within a long sequence. In this paper, we conduct research on applying the transformer networks for salient object detection (SOD). We adopt the dense transformer back bone for fully supervised RGB image based SOD, RGB-D image pair based SOD, and weakly supervised SOD within a unified framework based on the observation that the transformer backbone can provide accurate structure modeling, which makes it powerful in learning from weak labels with less structure information. Further, we find that the vision transformer architectures do not offer direct spatial supervision, instead encoding position as a feature. Therefore, we investigate the contributions of two strategies to provide stronger spatial supervision through the transformer layers within our unified framework, namely deep supervision and difficulty-aware learning. We find that deep supervision can get gradients back into the higher level features, thus leads to uniform activation within the same semantic object. Difficulty-aware learning on the other hand is capable of identifying the hard pixels for effective hard negative mining. We also visualize features of conventional backbone and transformer backbone before and after fine-tuning them for SOD, and find that transformer backbone encodes more accurate object structure information and more distinct semantic information within the lower and higher level features respectively. We also apply our model to camouflaged object detection (COD) and achieve similar observations as the above three SOD tasks. Extensive experimental results on various SOD and COD tasks illustrate that transformer networks can transform SOD and COD, leading to new benchmarks for each related task. The source code and experimental results are available via our project page: https://github.com/fupiao1998/TrasformerSOD.
125 - Shuhan Chen , Xiuli Tan , Ben Wang 2018
Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low reso lution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).
179 - Wangbo Zhao , Jing Zhang , Long Li 2021
Significant performance improvement has been achieved for fully-supervised video salient object detection with the pixel-wise labeled training datasets, which are time-consuming and expensive to obtain. To relieve the burden of data annotation, we pr esent the first weakly supervised video salient object detection model based on relabeled fixation guided scribble annotations. Specifically, an Appearance-motion fusion module and bidirectional ConvLSTM based framework are proposed to achieve effective multi-modal learning and long-term temporal context modeling based on our new weak annotations. Further, we design a novel foreground-background similarity loss to further explore the labeling similarity across frames. A weak annotation boosting strategy is also introduced to boost our model performance with a new pseudo-label generation technique. Extensive experimental results on six benchmark video saliency detection datasets illustrate the effectiveness of our solution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا