ﻻ يوجد ملخص باللغة العربية
The IceCube neutrino observatory uses $1,mathrm{km}^{3}$ of the natural Antarctic ice near the geographic South Pole as optical detection medium. When charged particles, such as particles produced in neutrino interactions, pass through the ice with relativistic speed, Cherenkov light is emitted. This is detected by IceCubes optical modules and from all these signals a particle signature is reconstructed. A new kind of signature can be detected using light emission from luminescence. This detection channel enables searches for exotic particles (states) which do not emit Cherenkov light and currently cannot be probed by neutrino detectors. Luminescence light is induced by highly ionizing particles passing through matter due to excitation of surrounding atoms. This process is highly dependent on the ice structure, impurities, pressure and temperature which demands an in-situ measurement of the detector medium. For the measurements at IceCube, a $1.7,mathrm{km}$ deep hole was used which {vertically} overlaps with the glacial ice layers found in the IceCube volume over a range of $350,mathrm{m}$. The experiment as well as the measurement results are presented. The impact {of the results, which enable new kind of} searches for new physics with neutrino telescopes, are discussed.
Cosmic ray detectors use air as a radiator for luminescence. In water and ice, Cherenkov light is the dominant light producing mechanism when the particles velocity exceeds the Cherenkov threshold, approximately three quarters of the speed of light i
The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERNs accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future coll
There are many recent results from searches for fundamental new physics using the TeVatron, the SLAC b-factory and HERA. This talk quickly reviewed searches for pair-produced stop, for gauge-mediated SUSY breaking, for Higgs bosons in the MSSM and NM
Results of investigations of the near-horizontal muons in the range of zenith angles of 85-95 degrees are presented. In this range, so-called albedo muons (atmospheric muons scattered in the ground into the upper hemisphere) are detected. Albedo muon
The Fermi effective theory of the weak interaction helped identify the structure of the electroweak sector of the Standard Model, and the chiral effective Lagrangian pointed towards QCD as the theory of the strong interactions. The Standard Model Eff