ﻻ يوجد ملخص باللغة العربية
The Fermi effective theory of the weak interaction helped identify the structure of the electroweak sector of the Standard Model, and the chiral effective Lagrangian pointed towards QCD as the theory of the strong interactions. The Standard Model Effective Field Theory (SMEFT) is a systematic and model-independent framework for characterizing experimental deviations from the predictions of the Standard Model and pointing towards the structures of its possible extensions that is complementary to direct searches for new physics beyond the Standard Model. This talk summarizes results from the first global fit to data from LHC Run 2 and earlier experiments including dimension-6 SMEFT operators, and gives examples how it can be used to constrain scenarios for new physics beyond the Standard Model. In addition, some windows for probing dimension-8 SMEFT operators are also mentioned.
We briefly review the global Standard Model fit to electroweak precision data, and discuss the status of electroweak constraints on new interactions. We follow a general effective Lagrangian approach to obtain model-independent limits on the dimensio
We review our expectations in the last year before the LHC commissioning.
I review the status of CP violation in the Standard Model from the combination of flavour constraints within the CKMfitter frequentist approach and I describe studies of New Physics restricted to the Delta F=2 sector to explain recent results on neut
This letter summarises the status of the global fit of the CKM parameters within the Standard Model performed by the CKMfitter group. Special attention is paid to the inputs for the CKM angles $alpha$ and $gamma$ and the status of $B_stomumu$ and $B_
We present the report of the hadronic working group of the BOOST2010 workshop held at the University of Oxford in June 2010. The first part contains a review of the potential of hadronic decays of highly boosted particles as an aid for discovery at t