ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate and compare two well-developed definitions of entropy relevant for describing the dynamics of isolated quantum systems: bipartite entanglement entropy and observational entropy. In a model system of interacting particles in a one-dimensional lattice, we numerically solve for the full quantum behavior of the system. We characterize the fluctuations, and find the maximal, minimal, and typical entropy of each type that the system can eventually attain through its evolution. While both entropies are low for some special configurations and high for more generic ones, there are several fundamental differences in their behavior. Observational entropy behaves in accord with classical Boltzmann entropy (e.g. equilibrium is a condition of near-maximal entropy and uniformly distributed particles, and minimal entropy is a very compact configuration). Entanglement entropy is rather different: minimal entropy empties out one partition while maximal entropy apportions the particles between the partitions, and neither is typical. Beyond these qualitative results, we characterize both entropies and their fluctuations in some detail as they depend on temperature, particle number, and box size.
The non-equilibrium response of a quantum many-body system defines its fundamental transport properties and how initially localized quantum information spreads. However, for long-range-interacting quantum systems little is known. We address this issu
We analyze the dynamics of periodically-driven (Floquet) Hamiltonians with short- and long-range interactions, finding clear evidence for a thermalization time, $tau^*$, that increases exponentially with the drive frequency. We observe this behavior,
Closed quantum many-body systems out of equilibrium pose several long-standing problems in physics. Recent years have seen a tremendous progress in approaching these questions, not least due to experiments with cold atoms and trapped ions in instance
We investigate the detailed properties of Observational entropy, introduced by v{S}afr{a}nek et al. [Phys. Rev. A 99, 010101 (2019)] as a generalization of Boltzmann entropy to quantum mechanics. This quantity can involve multiple coarse-grainings, e
The approach to equilibrium is studied for long-range quantum Ising models where the interaction strength decays like r^{-alpha} at large distances r with an exponent $alpha$ not exceeding the lattice dimension. For a large class of observables and i