ﻻ يوجد ملخص باللغة العربية
In this paper, the echo state network (ESN) memory capacity, which represents the amount of input data an ESN can store, is analyzed for a new type of deep ESNs. In particular, two deep ESN architectures are studied. First, a parallel deep ESN is proposed in which multiple reservoirs are connected in parallel allowing them to average outputs of multiple ESNs, thus decreasing the prediction error. Then, a series architecture ESN is proposed in which ESN reservoirs are placed in cascade that the output of each ESN is the input of the next ESN in the series. This series ESN architecture can capture more features between the input sequence and the output sequence thus improving the overall prediction accuracy. Fundamental analysis shows that the memory capacity of parallel ESNs is equivalent to that of a traditional shallow ESN, while the memory capacity of series ESNs is smaller than that of a traditional shallow ESN.In terms of normalized root mean square error, simulation results show that the parallel deep ESN achieves 38.5% reduction compared to the traditional shallow ESN while the series deep ESN achieves 16.8% reduction.
Recurrent Neural Networks (RNNs) have demonstrated their outstanding ability in sequence tasks and have achieved state-of-the-art in wide range of applications, such as industrial, medical, economic and linguistic. Echo State Network (ESN) is simple
A key attribute that drives the unprecedented success of modern Recurrent Neural Networks (RNNs) on learning tasks which involve sequential data, is their ability to model intricate long-term temporal dependencies. However, a well established measure
The quest for biologically plausible deep learning is driven, not just by the desire to explain experimentally-observed properties of biological neural networks, but also by the hope of discovering more efficient methods for training artificial netwo
Reinforcement learning (RL) algorithms have made huge progress in recent years by leveraging the power of deep neural networks (DNN). Despite the success, deep RL algorithms are known to be sample inefficient, often requiring many rounds of interacti
Echo state networks (ESNs) have been recently proved to be universal approximants for input/output systems with respect to various $L ^p$-type criteria. When $1leq p< infty$, only $p$-integrability hypotheses need to be imposed, while in the case $p=