ﻻ يوجد ملخص باللغة العربية
Wettability is a pore-scale property that has an important impact on capillarity, residual trapping, and hysteresis in porous media systems. In many applications, the wettability of the rock surface is assumed to be constant in time and uniform in space. However, many fluids are capable of altering the wettability of rock surfaces permanently and dynamically in time. Experiments have shown wettability alteration can significantly decrease capillarity in CO$_2$ storage applications. For these systems, the standard capillary-pressure model that assumes static wettability is insufficient to describe the physics. In this paper, we develop a new dynamic capillary-pressure model that takes into account changes in wettability at the pore-level by adding a dynamic term to the standard capillary pressure function. We simulate the dynamic system using a bundle-of-tubes (BoT) approach, where a mechanistic model for time-dependent contact angle change is introduced at the pore scale. The resulting capillary pressure curves are then used to quantify the dynamic component of the capillary pressure function. This study shows the importance of time-dependent wettability for determining capillary pressure over timescales of months to years. The impact of wettability has implications for experimental methodology as well as macroscale simulation of wettability-altering fluids.
The impact of a liquid drop on a solid surface involves many intertwined physical effects, and is influenced by drop velocity, surface tension, ambient pressure and liquid viscosity, among others. Experiments by Kolinski et al. (2014b) show that the
In this paper we study the influence of sample geometry on the measurement of pressure-saturation relationships, by analyzing the drainage of a two-phase flow from a quasi-2D random porous medium. The medium is transparent, which allows for the direc
The influence of miscibility and liquid wettability during droplet impact onto thin wall films is investigated experimentally. Despite similar liquid properties and impact conditions, differences in the splashing limit, the crown extension and the du
Complex network theory provides an elegant and powerful framework to statistically investigate different types of systems such as society, brain or the structure of local and long-range dynamical interrelationships in the climate system. Network link
We consider the collapse behavior of cavitation bubbles near walls under high ambient pressure conditions. Generic configurations with different stand-off distances are investigated by numerical simulation using a fully compressible two-phase flow so