ترغب بنشر مسار تعليمي؟ اضغط هنا

Krypton and radon background in the PandaX-I dark matter experiment

73   0   0.0 ( 0 )
 نشر من قبل Jianglai Liu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss an in-situ evaluation of the $^{85}$Kr, $^{222}$Rn, and $^{220}$Rn background in PandaX-I, a 120-kg liquid xenon dark matter direct detection experiment. Combining with a simulation, their contributions to the low energy electron-recoil background in the dark matter search region are obtained.


قيم البحث

اقرأ أيضاً

111 - E.Aprile , M.Alfonsi , K.Arisaka 2013
The XENON100 experiment, installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), aims to directly detect dark matter in the form of Weakly Interacting Massive Particles (WIMPs) via their elastic scattering off xenon nuclei. This pape r presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from ($alpha$,n) and spontaneous fission reactions due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on Monte Carlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by the XENON100 experiment in 2011 and 2012, 0.11$^{+0.08}_{-0.04}$ events and 0.17$^{+0.12}_{-0.07}$ events, respectively, and conclude that they do not limit the sensitivity of the experiment.
DAMIC (Dark Matter in CCDs) is a novel dark matter experiment that has unique sensitivity to dark matter particles with masses below 10 GeV. Due to its low electronic readout noise (R.M.S. ~3 e-) this instrument is able to reach a detection threshold below 0.5 keV nuclear recoil energy, making the search for dark matter particles with low masses possible. We report on early results and experience gained from a detector that has been running at SNOLAB from Dec 2012. We also discuss the measured and expected backgrounds and present the plan for future detectors to be installed in 2014.
We report on the first dark-matter (DM) search results from PandaX-I, a low threshold dual-phase xenon experiment operating at the China Jinping Underground Laboratory. In the 37-kg liquid xenon target with 17.4 live-days of exposure, no DM particle candidate event was found. This result sets a stringent limit for low-mass DM particles and disfavors the interpretation of previously-reported positive experimental results. The minimum upper limit, $3.7times10^{-44}$,cm$^2$, for the spin-independent isoscalar DM-particle-nucleon scattering cross section is obtained at a DM-particle mass of 49,GeV/c$^2$ at 90% confidence level.
The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PM
131 - Yue Meng , Zhou Wang , Yi Tao 2021
We report the first dark matter search results using the commissioning data from PandaX-4T. Using a time projection chamber with 3.7-tonne of liquid xenon target and an exposure of 0.63~tonne$cdot$year, 1058 candidate events are identified within an approximate electron equivalent energy window between 1 and 30 keV. No significant excess over background is observed. Our data set a stringent limit to the dark matter-nucleon spin-independent interactions, with a lowest excluded cross section (90% C.L.) of $3.3times10^{-47} $cm$^2$ at a dark matter mass of 30 GeV/$c^2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا