ﻻ يوجد ملخص باللغة العربية
Stars spend most of their lifetimes on the `main sequence (MS) in the Hertzsprung--Russell diagram. The obvious double MSs seen in the equivalent color--magnitude diagrams characteristic of Milky Way open clusters pose a fundamental challenge to our traditional understanding of star clusters as `single stellar populations. The clear MS bifurcation of early-type stars with masses greater than $sim1.6 M_odot$ is thought to result from a range in the stellar rotation rates. However, direct evidence connecting double MSs to stellar rotation properties has yet to emerge. Here, we show through analysis of the projected stellar rotational velocities ($vsin i$, where $i$ represents the stars inclination angle) that the well-separated double MS in the young, $sim200Myr$-old Milky Way open cluster NGC 2287 is tightly correlated with a dichotomous distribution of stellar rotation rates. We discuss whether our observations may reflect the effects of tidal locking affecting a fraction of the clusters member stars in stellar binary systems. We show that the slow rotators could potentially be initially rapidly rotating stars that have been slowed down by tidal locking by a low mass-ratio companion in a cluster containing a large fraction of short-period, low-mass-ratio binaries. This demonstrates that stellar rotation drives the split MSs in young, $lessapprox 300$Myr-old star clusters. However, special conditions, e.g., as regards the mass-ratio distribution, might be required for this scenario to hold.
We present a detailed analysis of the projected stellar rotational velocities of the well-separated double main sequence (MS) in the young, $sim200$Myr-old Milky Way open cluster NGC 2287 and suggest that stellar rotation may drive the split MSs in N
Gyrochronology allows the derivation of ages for cool main sequence stars based on their observed rotation periods and masses, or a suitable proxy thereof. It is increasingly well-explored for FGK stars, but requires further measurements for older ag
We present and analyse 120 spectroscopic binary and triple cluster members of the old (4 Gyr) open cluster M67 (NGC 2682). As a cornerstone of stellar astrophysics, M67 is a key cluster in the WIYN Open Cluster Study (WOCS); radial-velocity (RV) obse
Employing photometric rotation periods for solar-type stars in NGC 1039 [M 34], a young, nearby open cluster, we use its mass-dependent rotation period distribution to derive the clusters age in a distance independent way, i.e., the so-called gyrochr
We present a detailed study of stellar rotation in the massive 1.5 Gyr old cluster NGC 1846 in the Large Magellanic Cloud. Similar to other clusters at this age, NGC 1846 shows an extended main sequence turn-off (eMSTO), and previous photometric stud