ترغب بنشر مسار تعليمي؟ اضغط هنا

Oxford Handbook on AI Ethics Book Chapter on Race and Gender

249   0   0.0 ( 0 )
 نشر من قبل Timnit Gebru
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Timnit Gebru




اسأل ChatGPT حول البحث

From massive face-recognition-based surveillance and machine-learning-based decision systems predicting crime recidivism rates, to the move towards automated health diagnostic systems, artificial intelligence (AI) is being used in scenarios that have serious consequences in peoples lives. However, this rapid permeation of AI into society has not been accompanied by a thorough investigation of the sociopolitical issues that cause certain groups of people to be harmed rather than advantaged by it. For instance, recent studies have shown that commercial face recognition systems have much higher error rates for dark skinned women while having minimal errors on light skinned men. A 2016 ProPublica investigation uncovered that machine learning based tools that assess crime recidivism rates in the US are biased against African Americans. Other studies show that natural language processing tools trained on newspapers exhibit societal biases (e.g. finishing the analogy Man is to computer programmer as woman is to X by homemaker). At the same time, books such as Weapons of Math Destruction and Automated Inequality detail how people in lower socioeconomic classes in the US are subjected to more automated decision making tools than those who are in the upper class. Thus, these tools are most often used on people towards whom they exhibit the most bias. While many technical solutions have been proposed to alleviate bias in machine learning systems, we have to take a holistic and multifaceted approach. This includes standardization bodies determining what types of systems can be used in which scenarios, making sure that automated decision tools are created by people from diverse backgrounds, and understanding the historical and political factors that disadvantage certain groups who are subjected to these tools.



قيم البحث

اقرأ أيضاً

In February 2020, the European Commission (EC) published a white paper entitled, On Artificial Intelligence - A European approach to excellence and trust. This paper outlines the ECs policy options for the promotion and adoption of artificial intelli gence (AI) in the European Union. The Montreal AI Ethics Institute (MAIEI) reviewed this paper and published a response addressing the ECs plans to build an ecosystem of excellence and an ecosystem of trust, as well as the safety and liability implications of AI, the internet of things (IoT), and robotics. MAIEI provides 15 recommendations in relation to the sections outlined above, including: 1) focus efforts on the research and innovation community, member states, and the private sector; 2) create alignment between trading partners policies and EU policies; 3) analyze the gaps in the ecosystem between theoretical frameworks and approaches to building trustworthy AI; 4) focus on coordination and policy alignment; 5) focus on mechanisms that promote private and secure sharing of data; 6) create a network of AI research excellence centres to strengthen the research and innovation community; 7) promote knowledge transfer and develop AI expertise through Digital Innovation Hubs; 8) add nuance to the discussion regarding the opacity of AI systems; 9) create a process for individuals to appeal an AI systems decision or output; 10) implement new rules and strengthen existing regulations; 11) ban the use of facial recognition technology; 12) hold all AI systems to similar standards and compulsory requirements; 13) ensure biometric identification systems fulfill the purpose for which they are implemented; 14) implement a voluntary labelling system for systems that are not considered high-risk; 15) appoint individuals to the oversight process who understand AI systems well and are able to communicate potential risks.
The history of science and technology shows that seemingly innocuous developments in scientific theories and research have enabled real-world applications with significant negative consequences for humanity. In order to ensure that the science and te chnology of AI is developed in a humane manner, we must develop research publication norms that are informed by our growing understanding of AIs potential threats and use cases. Unfortunately, its difficult to create a set of publication norms for responsible AI because the field of AI is currently fragmented in terms of how this technology is researched, developed, funded, etc. To examine this challenge and find solutions, the Montreal AI Ethics Institute (MAIEI) co-hosted two public consultations with the Partnership on AI in May 2020. These meetups examined potential publication norms for responsible AI, with the goal of creating a clear set of recommendations and ways forward for publishers. In its submission, MAIEI provides six initial recommendations, these include: 1) create tools to navigate publication decisions, 2) offer a page number extension, 3) develop a network of peers, 4) require broad impact statements, 5) require the publication of expected results, and 6) revamp the peer-review process. After considering potential concerns regarding these recommendations, including constraining innovation and creating a black market for AI research, MAIEI outlines three ways forward for publishers, these include: 1) state clearly and consistently the need for established norms, 2) coordinate and build trust as a community, and 3) change the approach.
130 - Gabriel Lima , Meeyoung Cha 2021
There is a growing need for data-driven research efforts on how the public perceives the ethical, moral, and legal issues of autonomous AI systems. The current debate on the responsibility gap posed by these systems is one such example. This work pro poses a mixed AI ethics model that allows normative and descriptive research to complement each other, by aiding scholarly discussion with data gathered from the public. We discuss its implications on bridging the gap between optimistic and pessimistic views towards AI systems deployment.
The 2nd edition of the Montreal AI Ethics Institutes The State of AI Ethics captures the most relevant developments in the field of AI Ethics since July 2020. This report aims to help anyone, from machine learning experts to human rights activists an d policymakers, quickly digest and understand the ever-changing developments in the field. Through research and article summaries, as well as expert commentary, this report distills the research and reporting surrounding various domains related to the ethics of AI, including: AI and society, bias and algorithmic justice, disinformation, humans and AI, labor impacts, privacy, risk, and future of AI ethics. In addition, The State of AI Ethics includes exclusive content written by world-class AI Ethics experts from universities, research institutes, consulting firms, and governments. These experts include: Danit Gal (Tech Advisor, United Nations), Amba Kak (Director of Global Policy and Programs, NYUs AI Now Institute), Rumman Chowdhury (Global Lead for Responsible AI, Accenture), Brent Barron (Director of Strategic Projects and Knowledge Management, CIFAR), Adam Murray (U.S. Diplomat working on tech policy, Chair of the OECD Network on AI), Thomas Kochan (Professor, MIT Sloan School of Management), and Katya Klinova (AI and Economy Program Lead, Partnership on AI). This report should be used not only as a point of reference and insight on the latest thinking in the field of AI Ethics, but should also be used as a tool for introspection as we aim to foster a more nuanced conversation regarding the impacts of AI on the world.
480 - Abhishek Gupta 2021
The 3rd edition of the Montreal AI Ethics Institutes The State of AI Ethics captures the most relevant developments in AI Ethics since October 2020. It aims to help anyone, from machine learning experts to human rights activists and policymakers, qui ckly digest and understand the fields ever-changing developments. Through research and article summaries, as well as expert commentary, this report distills the research and reporting surrounding various domains related to the ethics of AI, including: algorithmic injustice, discrimination, ethical AI, labor impacts, misinformation, privacy, risk and security, social media, and more. In addition, The State of AI Ethics includes exclusive content written by world-class AI Ethics experts from universities, research institutes, consulting firms, and governments. Unique to this report is The Abuse and Misogynoir Playbook, written by Dr. Katlyn Tuner (Research Scientist, Space Enabled Research Group, MIT), Dr. Danielle Wood (Assistant Professor, Program in Media Arts and Sciences; Assistant Professor, Aeronautics and Astronautics; Lead, Space Enabled Research Group, MIT) and Dr. Catherine DIgnazio (Assistant Professor, Urban Science and Planning; Director, Data + Feminism Lab, MIT). The piece (and accompanying infographic), is a deep-dive into the historical and systematic silencing, erasure, and revision of Black womens contributions to knowledge and scholarship in the United Stations, and globally. Exposing and countering this Playbook has become increasingly important following the firing of AI Ethics expert Dr. Timnit Gebru (and several of her supporters) at Google. This report should be used not only as a point of reference and insight on the latest thinking in the field of AI Ethics, but should also be used as a tool for introspection as we aim to foster a more nuanced conversation regarding the impacts of AI on the world.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا