ترغب بنشر مسار تعليمي؟ اضغط هنا

Adelfa: A System for Reasoning about LF Specifications

105   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Mary Southern




اسأل ChatGPT حول البحث

We present a system called Adelfa that provides mechanized support for reasoning about specifications developed in the Edinburgh Logical Framework or LF. Underlying Adelfa is a new logic named L_LF. Typing judgements in LF are represented by atomic formulas in L_LF and quantification is permitted over contexts and terms that appear in such formulas. Contexts, which constitute type assignments to uniquely named variables that are modelled using the technical device of nominal constants, are characterized in L_LF by context schemas that describe their inductive structure. We present these formulas and an associated semantics before sketching a proof system for constructing arguments that are sound with respect to the semantics. We then outline the realization of this proof system in Adelfa and illustrate its use through a few example proof developments. We conclude the paper by relating Adelfa to existing systems for reasoning about LF specifications.

قيم البحث

اقرأ أيضاً

Most modern (classical) programming languages support recursion. Recursion has also been successfully applied to the design of several quantum algorithms and introduced in a couple of quantum programming languages. So, it can be expected that recursi on will become one of the fundamental paradigms of quantum programming. Several program logics have been developed for verification of quantum while-programs. However, there are as yet no general methods for reasoning about (mutual) recursive procedures and ancilla quantum data structure in quantum computing (with measurement). We fill the gap in this paper by proposing a parameterized quantum assertion logic and, based on which, designing a quantum Hoare logic for verifying parameterized recursive quantum programs with ancilla data and probabilistic control. The quantum Hoare logic can be used to prove partial, total, and even probabilistic correctness (by reducing to total correctness) of those quantum programs. In particular, two counterexamples for illustrating incompleteness of non-parameterized assertions in verifying recursive procedures, and, one counterexample for showing the failure of reasoning with exact probabilities based on partial correctness, are constructed. The effectiveness of our logic is shown by three main examples -- recursive quantum Markov chain (with probabilistic control), fixed-point Grovers search, and recursive quantum Fourier sampling.
Program transformation has gained a wide interest since it is used for several purposes: altering semantics of a program, adding features to a program or performing optimizations. In this paper we focus on program transformations at the bytecode leve l. Because these transformations may introduce errors, our goal is to provide a formal way to verify the update and establish its correctness. The formal framework presented includes a definition of a formal semantics of updates which is the base of a static verification and a scheme based on Hoare triples and weakest precondition calculus to reason about behavioral aspects in bytecode transformation
We provide a sound and relatively complete Hoare-like proof system for reasoning about partial correctness of recursive procedures in presence of local variables and the call-by-value parameter mechanism, and in which the correctness proofs are linea r in the length of the program. We argue that in spite of the fact that Hoare-like proof systems for recursive procedures were intensively studied, no such proof system has been proposed in the literature.
We give a leisurely introduction to our abstract framework for operational semantics based on cellular monads on transition categories. Furthermore, we relate it for the first time to an existing format, by showing that all Positive GSOS specificatio ns generate cellular monads whose free algebras are all compositional. As a consequence, we recover the known result that bisimilarity is a congruence in the generated labelled transition system.
We introduce an extension of Hoare logic for call-by-value higher-order functions with ML-like local reference generation. Local references may be generated dynamically and exported outside their scope, may store higher-order functions and may be use d to construct complex mutable data structures. This primitive is captured logically using a predicate asserting reachability of a reference name from a possibly higher-order datum and quantifiers over hidden references. We explore the logics descriptive and reasoning power with non-trivial programming examples combining higher-order procedures and dynamically generated local state. Axioms for reachability and local invariant play a central role for reasoning about the examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا