ﻻ يوجد ملخص باللغة العربية
The specific features of nonlinear pair production and radiation processes in an ultratsrong rotating electric field are investigated, taking into account that this field models the antinodes of counterpropagating laser beams. It is shown that a particle in a rotating electric field acquires an effective mass which depends on its momentum absolute value as well as on its direction with respect to the field plane. This phenomenon has an impact on the nonlinear Breit-Wheeler and nonlinear Compton processes. The spectra of the produced pairs in the first case, and the emitted photon in the second case, are shown to bear signatures of the effective mass. In the first case, the threshold for pair production by a $gamma$-photon in the presence of this field varies according to the photon propagation direction. In the second case, varying the energy of the incoming electron allows for the measurement of the momentum dependence of the effective mass. Two corresponding experimental setups are suggested.
We use the evolution operator method to find the one-loop effective action of scalar and spinor QED in electric field backgrounds in terms of the Bogoliubov coefficient between the ingoing and the outgoing vacua. We obtain the exact one-loop effectiv
An interesting class of background field configurations in QED are the O(2)xO(3) symmetric fields. Those backgrounds have some instanton-like properties and yield a one-loop effective action that is highly nontrivial but amenable to numerical calcula
We find the Bogoliubov coefficient from the tunneling boundary condition on a charged particle coupled to a static electric field $E_0 sech^2 (z/L)$ and, using the regularization scheme in Phys. Rev. D 78, 105013 (2008), obtain the exact one-loop eff
We study all-optical signatures of the effective nonlinear couplings among electromagnetic fields in the quantum vacuum, using the collision of two focused high-intensity laser pulses as an example. The experimental signatures of quantum vacuum nonli
We report on computer simulations and analytic theory to provide a self-consistent understanding of the role of the reconnection electric field, which extends substantially beyond the simple change of magnetic connections. Rather, we find that the re