ﻻ يوجد ملخص باللغة العربية
An interesting class of background field configurations in QED are the O(2)xO(3) symmetric fields. Those backgrounds have some instanton-like properties and yield a one-loop effective action that is highly nontrivial but amenable to numerical calculation, for both scalar and spinor QED. Here we use the recently developed partial-wave-cutoff method for a numerical analysis of both effective actions in the full mass range. In particular, at large mass we are able to match the asymptotic behavior of the physically renormalized effective action against the leading two mass levels of the inverse mass (or heat kernel) expansion. At small mass we obtain good numerical results even in the massless case for the appropriately (unphysically) renormalized effective action after the removal of the chiral anomaly term through a small radial cutoff factor. In particular, we show that the effective action after this removal remains finite in the massless limit, which also provides indirect support for M. Frys hypothesis that the QED effective action in this limit is dominated by the chiral anomaly term.
We use the evolution operator method to find the one-loop effective action of scalar and spinor QED in electric field backgrounds in terms of the Bogoliubov coefficient between the ingoing and the outgoing vacua. We obtain the exact one-loop effectiv
We show how to generalize the previous result of the monopole condensation in SU(2) QCD to SU(3) QCD. We present the gauge independent Weyl symmetric Abelian decomposition of the SU(3) QCD which decomposes the gluons to the color neutral neurons and
We find the Bogoliubov coefficient from the tunneling boundary condition on a charged particle coupled to a static electric field $E_0 sech^2 (z/L)$ and, using the regularization scheme in Phys. Rev. D 78, 105013 (2008), obtain the exact one-loop eff
We show how to calculate the effective potential of SU(3) QCD which tells that the true minimum is given by the monopole condensation. To do this we make the gauge independent Weyl symmetric Abelian decomposition of the SU(3) QCD which decomposes the
We advance a novel method for the finite-temperature effective action for nonequilibrium quantum fields and find the QED effective action in time-dependent electric fields, where charged pairs evolve out of equilibrium. The imaginary part of the effe