ﻻ يوجد ملخص باللغة العربية
Pedestrian action recognition and intention prediction is one of the core issues in the field of autonomous driving. In this research field, action recognition is one of the key technologies. A large number of scholars have done a lot of work to im-prove the accuracy of the algorithm for the task. However, there are relatively few studies and improvements in the computational complexity of algorithms and sys-tem real-time. In the autonomous driving application scenario, the real-time per-formance and ultra-low latency of the algorithm are extremely important evalua-tion indicators, which are directly related to the availability and safety of the au-tonomous driving system. To this end, we construct a bypass enhanced RGB flow model, which combines the previous two-branch algorithm to extract RGB feature information and optical flow feature information respectively. In the train-ing phase, the two branches are merged by distillation method, and the bypass enhancement is combined in the inference phase to ensure accuracy. The real-time behavior of the behavior recognition algorithm is significantly improved on the premise that the accuracy does not decrease. Experiments confirm the superiority and effectiveness of our algorithm.
Pedestrians are arguably one of the most safety-critical road users to consider for autonomous vehicles in urban areas. In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes from a single imag
Action recognition is an important research topic in computer vision. It is the basic work for visual understanding and has been applied in many fields. Since human actions can vary in different environments, it is difficult to infer actions in compl
Analyzing videos of human actions involves understanding the temporal relationships among video frames. State-of-the-art action recognition approaches rely on traditional optical flow estimation methods to pre-compute motion information for CNNs. Suc
State-of-the-art temporal action detectors to date are based on two-stream input including RGB frames and optical flow. Although combining RGB frames and optical flow boosts performance significantly, optical flow is a hand-designed representation wh
A new paradigm is proposed for autonomous driving. The new paradigm lies between the end-to-end and pipelined approaches, and is inspired by how humans solve the problem. While it relies on scene understanding, the latter only considers objects that