ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino Telescope in Lake Baikal: Present and Future

57   0   0.0 ( 0 )
 نشر من قبل Fedor Simkovic
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A significant progress in the construction and operation of the Baikal Gigaton Volume Detector in Lake Baikal, the largest and deepest freshwater lake in the world, is reported. The effective volume of the detector for neutrino initiated cascades of relativistic particles with energy above 100 TeV has been increased up to about 0.25 cubic kilometer. This unique scientific facility, the largest operating neutrino telescope in Northern Hemisphere, allows already to register two to three events per year from astrophysical neutrinos with energies exceeding 100 TeV. Preliminary results obtained with data recorded in 2016-2018 are announced. Multimessenger approach is used to relate finding of cosmic neutrinos with those of classical astronomers, with X-ray or gamma-ray observations and the gravitational wave events.



قيم البحث

اقرأ أيضاً

We present data on the luminescence of the Baikal water medium collected with the Baikal-GVD neutrino telescope. This three-dimensional array of light sensors allows the observation of time and spatial variations of the ambient light field. We report on observation of an increase of luminescence activity in 2016 and 2018. On the contrary, we observed practically constant optical noise in 2017. An agreement has been found between two independent optical noise data sets. These are data collected with online monitoring system and the trigger system of the cluster.
128 - Dmitry Zaborov 2020
Neutrino astronomy offers a novel view of the non-thermal Universe and is complementary to other astronomical disciplines. The field has seen rapid progress in recent years, including the first detection of astrophysical neutrinos in the TeV-PeV ener gy range by IceCube and the first identified extragalactic neutrino source (TXS 0506+056). Further discoveries are aimed for with new cubic-kilometer telescopes in the Northern Hemisphere: Baikal-GVD, in Lake Baikal, and KM3NeT-ARCA, in the Mediterranean sea. The construction of Baikal-GVD proceeds as planned; the detector currently includes over 2000 optical modules arranged on 56 strings, providing an effective volume of 0.35 km$^3$. We review the scientific case for Baikal-GVD, the construction plan, and first results from the partially built array.
Baikal-GVD is a neutrino telescope currently under construction in Lake Baikal. GVD is formed by multi-meganton subarrays (clusters). The design of Baikal-GVD allows one to search for astrophysical neutrinos already at early phases of the array const ruction. We present here preliminary results of a search for high-energy neutrinos with GVD in 2019-2020.
Reactor neutrinos have been an important tool for both discovery and precision measurement in the history of neutrino studies. Since the first generation of reactor neutrino experiments in the 1950s, the detector technology has been greatly advanced. New ideas, new knowledge, and modern software also enhanced the power of the experiments. The current reactor neutrino experiments, Daya Bay, Double Chooz, and RENO have led neutrino physics into the precision era. In this article, we will review these developments and accumulations, address the key issues in designing a state-of-art reactor neutrino experiment, and explain how the challenging requirements of determining the neutrino mass hierarchy with the next generation experiment JUNO could be realized in the near future.
Multi-messenger astronomy is a powerful tool to study the physical processes driving the non-thermal Universe. A combination of observations in cosmic rays, neutrinos, photons of all wavelengths and gravitational waves is expected. The alert system o f the Baikal-GVD detector under construction will allow for a fast, on-line reconstruction of neutrino events recorded by the Baikal-GVD telescope and - if predefined conditions are satisfied - for the formation of an alert message to other communities. The preliminary results of searches for high-energy neutrinos in coincidence with GW170817/GRB170817A using the cascade mode of neutrino detection are discussed. Two Baikal-GVD clusters were operating during 2017. The zenith angle of NGC 4993 at the detection time of the GW170817 was 93.3 degrees. No events spatially coincident with GRB170817A were found. Given the non-detection of neutrino events associated with GW170817, upper limits on the neutrino fluence were established.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا